A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Two-Dimensional Nickel Porphyrinic Metal-Organic Framework-Modified Electrode for Electrochemical Sensing. | LitMetric

Two-Dimensional Nickel Porphyrinic Metal-Organic Framework-Modified Electrode for Electrochemical Sensing.

Langmuir

Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.

Published: February 2024

Due to their highly exposed active sites and high aspect ratio caused by their substantial lateral dimension and thin thickness, two-dimensional (2D) metal-organic framework (MOF) nanosheets are currently considered a potential hybrid material for electrochemical sensing. Herein, we present a nickel-based porphyrinic MOF nanosheet as a versatile and robust platform with an enhanced electrochemical detection performance. It is important to note that the nickel porphyrin ligand reacted with Cu(NO)·3HO in a solvothermal process, with polyvinylpyrrolidone (PVP) acting as the surfactant to control the anisotropic development of creating a 2D Cu-TCPP(Ni) MOF nanosheet structure. To realize the exceptional selectivity, sensitivity, and stability of the synthesized 2D Cu-TCPP(Ni) MOF nanosheet, a laser-induced graphene electrode was modified with the MOF nanosheet and employed as a sensor for the detection of -nitrophenol (-NP). With a detection range of 0.5-200 μM for differential pulse voltammetry (DPV) and 0.9-300 μM for cyclic voltammetry (CV), the proposed sensor demonstrated enhanced electrochemical performance, with the limit of detection (LOD) for DPV and CV as 0.1 and 0.3 μM, respectively. The outstanding outcome of the sensor is attributed to the 2D Cu-TCPP(Ni) MOF nanosheet's substantial active surface area, innate catalytic activity, and superior adsorption capacity. Furthermore, it is anticipated that the proposed electrode sensor will make it possible to create high-performance electrochemical sensors for environmental point-of-care testing since it successfully detected -NP in real sample analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c03257DOI Listing

Publication Analysis

Top Keywords

mof nanosheet
16
cu-tcppni mof
12
electrochemical sensing
8
enhanced electrochemical
8
mof
6
electrochemical
5
two-dimensional nickel
4
nickel porphyrinic
4
porphyrinic metal-organic
4
metal-organic framework-modified
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!