Although novel knowledge has been acquired on the molecular landscape of glioblastoma (GBM), a relatively few steps forward have been made regarding its therapy. With the increasing use of novel immunotherapeutic drugs capable of stimulating the antitumor inflammatory response, in the last decades numerous studies aimed to characterize the tumor-associated microenvironment (TME) and its relationship with the immunogenicity of GBM. In this regard, although the tumor-associated microglia and macrophages (TAMs) and PD-L1/PD-1 axis have been emerged as one of the most relevant components of the GBM TME and one of the potential molecular pathways targetable with immunotherapy, respectively. It has been supposed that TAMs may acquire different phenotypes, switching from M1 to M2 phenotypes, with tumor-suppressive and tumor-stimulating role depending on the different surrounding conditions. PD-L1 is a type 1 transmembrane protein ligand expressed by T-cells, B-cells and antigen-presenting cells, with a main inhibitory checkpoint role on tumor immune regulation. While PD-L1 immunohistochemical expression has been extensively investigated in many cancers, its usefulness in the evaluation of GBM response rates to immunotherapy and its standardized evaluation by immunohistochemistry are still debated. The present review paper focuses on the current "state of the art" about the relationship between TME, PD-L1/PD-1 pathway and immunotherapy in GBM, also providing neuropathologists with an updated guide about the clinical trials conducted with PD-L1 and PD-1 inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2024.155144DOI Listing

Publication Analysis

Top Keywords

tumor-associated microenvironment
8
gbm
5
pd-l1
4
microenvironment pd-l1
4
pd-l1 expression
4
expression relationship
4
immunotherapy
4
relationship immunotherapy
4
immunotherapy glioblastoma
4
glioblastoma idh-wild
4

Similar Publications

: Tumor associated macrophages (TAMs) are critical components in regulating the immune statuses of the tumor microenvironments. Although TAM has been intensively studied, it is unclear how mitochondrial proteins such as AGK regulate the TAMs' function. : We investigated the AGK function in TAMs using macrophage-specific deficient mice with B16 and LLC syngeneic tumor models.

View Article and Find Full Text PDF

Slamming hepatocellular carcinoma: targeting immunosuppressive macrophages via SLAMF7 reprograms the tumor microenvironment.

Transl Cancer Res

December 2024

Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and one of the leading causes of cancer-related deaths worldwide due to limited treatment options. The tumor microenvironment (TME), which is usually immunosuppressive in HCC, appears to be a decisive factor for response to immunotherapy and strategies aimed at inducing a more inflamed TME hold promise to overcome resistance to immunotherapy. Within the TME, the interplay of various cell types determines whether immunotherapy is successful.

View Article and Find Full Text PDF

Inhibiting T cell exhaustion is an attractive cancer immunotherapy strategy. In this issue of Immunity, Waibl Polania et al. examine the microenvironmental signals regulating terminal T cell exhaustion and find that antigen presentation by tumor-associated macrophages, not tumor cells, drives terminal T cell exhaustion in glioblastoma.

View Article and Find Full Text PDF

Successful pancreatic ductal adenocarcinoma (PDAC) immunotherapy requires therapeutic combinations that induce quality T cells. Tumor microenvironment (TME) analysis following therapeutic interventions can identify response mechanisms, informing design of effective combinations. We provide a reference single-cell dataset from tumor-infiltrating leukocytes (TILs) from a human neoadjuvant clinical trial comparing the granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting allogeneic PDAC vaccine GVAX alone, in combination with anti-PD1 or with both anti-PD1 and CD137 agonist.

View Article and Find Full Text PDF

Double-targeted liposomes coated with matrix metallopeptidase-2-responsive polypeptide nanogel for chemotherapy and enhanced immunotherapy against cervical cancer.

Mater Today Bio

February 2025

Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China.

Immunotherapy is a cornerstone in cancer treatment, celebrated for its precision, ability to eliminate residual cancer cells, and potential to avert tumor recurrence. Nonetheless, its effectiveness is frequently undermined by the immunosuppressive milieu created by tumors. This study presents a novel nanogel-based drug delivery system, DOX-4PI@CpG@Lipo@Gel (DPCLG), engineered to respond to Matrix Metallopeptidase-2 (MMP-2)-a protease abundant in the tumor microenvironment (TME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!