We investigate order parameter fluctuations in the Hubbard model within a time-dependent Gutzwiller approach. While in the weak coupling limit we find that the amplitude fluctuations are short-lived due to a degeneracy with the energy of the edge of the quasiparticle continua (and in agreement with Hartree-Fock+RPA theory), these are shifted below the edge upon increasing the interaction. Our calculations therefore predict undamped amplitude (Higgs) oscillations of the order parameter in strongly coupled superconductors, cold atomic fermion condensates, and strongly interacting charge- and spin-density wave systems. We propose an experimental realization for the detection of the spin-type Higgs mode in undoped cuprates and related materials where, due to the Dzyaloshinsky-Moriya interaction, it can couple to an out-of-plane ferromagnetic excitation that is visible via the Faraday effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.026501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!