A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design principles of heterointerfacial redox chemistry for highly reversible lithium metal anode. | LitMetric

Design principles of heterointerfacial redox chemistry for highly reversible lithium metal anode.

Proc Natl Acad Sci U S A

State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China.

Published: January 2024

High electrochemical reversibility is required for the application of high-energy-density lithium (Li) metal batteries; however, inactive Li formation and SEI (solid electrolyte interface)-instability-induced electrolyte consumption cause low Coulombic efficiency (CE). The prior interfacial chemical designs in terms of alloying kinetics have been used to enhance the CE of Li metal anode; however, the role of its redox chemistry at heterointerfaces remains a mystery. Herein, the relationship between heterointerfacial redox chemistry and electrochemical transformation reversibility is investigated. It is demonstrated that the lower redox potential at heterointerface contributes to higher CE, and this enhancement in CE is primarily due to the regulation of redox chemistry to Li deposition behavior rather than the formation of SEI films. Low oxidation potential facilitates the formation of the surface with the highly electrochemical binding feature after Li stripping, and low reduction potential can maintain binding ability well during subsequent Li plating, both of which homogenize Li deposition and thus optimize CE. In particular, Mg hetero-metal with ultra-low redox potential enables Li metal anode with significantly improved CE (99.6%) and stable cycle life for 700 cycles at 3.0 mA cm. This work provides insight into the heterointerfacial design principle of next-generation negative electrodes for highly reversible metal batteries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10835077PMC
http://dx.doi.org/10.1073/pnas.2315871121DOI Listing

Publication Analysis

Top Keywords

redox chemistry
16
metal anode
12
heterointerfacial redox
8
highly reversible
8
lithium metal
8
metal batteries
8
formation sei
8
redox potential
8
redox
6
metal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!