Design, Synthesis, and Evaluation of An Anti-trypanosomal [1,2,4]Triazolo[1,5-a]pyrimidine Probe for Photoaffinity Labeling Studies.

ChemMedChem

Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.

Published: April 2024

Studies have shown that depending on the substitution pattern, microtubule (MT)-targeting 1,2,4-triazolo[1,5-a]pyrimidines (TPDs) can produce different cellular responses in mammalian cells that may be due to these compounds interacting with distinct binding sites within the MT structure. Selected TPDs are also potently bioactive against the causative agent of human African trypanosomiasis, Trypanosoma brucei, both in vitro and in vivo. So far, however, there has been no direct evidence of tubulin engagement by these TPDs in T. brucei. Therefore, to enable further investigation of anti-trypanosomal TPDs, a TPD derivative amenable to photoaffinity labeling (PAL) was designed, synthesized, and evaluated in PAL experiments using HEK293 cells and T. brucei. The data arising confirmed specific labeling of T. brucei tubulin. In addition, proteomic data revealed differences in the labeling profiles of tubulin between HEK293 and T. brucei, suggesting structural differences between the TPD binding site(s) in mammalian and trypanosomal tubulin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11031298PMC
http://dx.doi.org/10.1002/cmdc.202300656DOI Listing

Publication Analysis

Top Keywords

photoaffinity labeling
8
binding sites
8
brucei
5
design synthesis
4
synthesis evaluation
4
evaluation anti-trypanosomal
4
anti-trypanosomal [124]triazolo[15-a]pyrimidine
4
[124]triazolo[15-a]pyrimidine probe
4
probe photoaffinity
4
labeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!