A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neural-Net Artificial Pancreas: A Randomized Crossover Trial of a First-in-Class Automated Insulin Delivery Algorithm. | LitMetric

Automated insulin delivery (AID) is now integral to the clinical practice of type 1 diabetes (T1D). The objective of this pilot-feasibility study was to introduce a new regulatory and clinical paradigm-a Neural-Net Artificial Pancreas (NAP)-an encoding of an AID algorithm into a neural network that approximates its action and assess NAP versus the original AID algorithm. The University of Virginia Model-Predictive Control (UMPC) algorithm was encoded into a neural network, creating its NAP approximation. Seventeen AID users with T1D were recruited and 15 participated in two consecutive 20-h hotel sessions, receiving in random order either NAP or UMPC. Their demographic characteristics were ages 22-68 years old, duration of diabetes 7-58 years, gender 10/5 female/male, White Non-Hispanic/Black 13/2, and baseline glycated hemoglobin 5.4%-8.1%. The time-in-range (TIR) difference between NAP and UMPC, adjusted for entry glucose level, was 1 percentage point, with absolute TIR values of 86% (NAP) and 87% (UMPC). The two algorithms achieved similar times <70 mg/dL of 2.0% versus 1.8% and coefficients of variation of 29.3% (NAP) versus 29.1 (UMPC)%. Under identical inputs, the average absolute insulin-recommendation difference was 0.031 U/h. There were no serious adverse events on either controller. NAP had sixfold lower computational demands than UMPC. In a randomized crossover study, a neural-network encoding of a complex model-predictive control algorithm demonstrated similar performance, at a fraction of the computational demands. Regulatory and clinical doors are therefore open for contemporary machine-learning methods to enter the AID field. Clinical Trial Registration number: NCT05876273.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11305265PMC
http://dx.doi.org/10.1089/dia.2023.0469DOI Listing

Publication Analysis

Top Keywords

neural-net artificial
8
artificial pancreas
8
automated insulin
8
insulin delivery
8
aid algorithm
8
neural network
8
nap umpc
8
nap
5
pancreas randomized
4
randomized crossover
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!