A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Continuous Glucose Monitor Metrics Are Associated with Emergency Department Visits and Hospitalizations for Hypoglycemia and Hyperglycemia, but Have Low Predictive Value. | LitMetric

Determine whether continuous glucose monitor (CGM) metrics can provide actionable advance warning of an emergency department (ED) visit or hospitalization for hypoglycemic or hyperglycemic (dysglycemic) events. Two nested case-control studies were conducted among insulin-treated diabetes patients at Kaiser Permanente, who shared their CGM data with their providers. Cases included dysglycemic events identified from ED and hospital records (2016-2021). Controls were selected using incidence density sampling. Multiple CGM metrics were calculated among patients using CGM >70% of the time, using CGM data from two lookback periods (0-7 and 8-14 days) before each event. Generalized estimating equations were specified to estimate odds ratios and C-statistics. Among 3626 CGM users, 108 patients had 154 hypoglycemic events and 165 patients had 335 hyperglycemic events. Approximately 25% of patients had no CGM data during either lookback; these patients had >2 × the odds of a hypoglycemic event and 3-4 × the odds of a hyperglycemic event. While several metrics were strongly associated with a dysglycemic event, none had good discrimination. Several CGM metrics were strongly associated with risk of dysglycemic events, and these can be used to identify higher risk patients. Also, patients who are not using their CGM device may be at elevated risk of adverse outcomes. However, no CGM metric or absence of CGM data had adequate discrimination to reliably provide actionable advance warning of an event and thus justify a rapid intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058412PMC
http://dx.doi.org/10.1089/dia.2023.0493DOI Listing

Publication Analysis

Top Keywords

cgm data
16
metrics associated
12
cgm metrics
12
dysglycemic events
12
patients cgm
12
cgm
11
continuous glucose
8
glucose monitor
8
emergency department
8
provide actionable
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!