Context: Protein-protein interaction interfaces play a major role in cell signaling pathways. There is always a great interest in developing protein-protein interaction (PPI) inhibitors of kinases, as they are challenging due to their hydrophobicity, flat surface, specificity, potency, etc. 3 Phosphoinositide-dependent kinase-1 (PDK1), which is involved in the PI3K/PDK1/AKT pathway, is a cancer target that has gained insight for the past two decades. PDK1 possesses a protein interaction fragment (PIF) pocket, which is a well-known PPI that targets allosteric modulators. This work focusses on energy-based pharmacophore model development which on virtual screening could yield novel scaffolds towards the drug designing objective for the kind of PDK1 modulators. A novel pyrazolo pyridine molecule was identified as an allosteric modulator that binds to the PPI site. The metadynamics simulations with free energy profiles further revealed the conformational allosteric changes stimulated on the protein structure upon ligand binding. The cytotoxic activity (IC-20 μM) of the identified compound against five different cancer cell lines and cell cycle analysis supported the anticancer activity of the identified compound.

Methods: All the computational works were carried out by the most commonly used Schrodinger Suite software. The pharmacophore was validated by Receiver Operation Characteristics (ROC) and screening against allosteric Enamine database library. The Optimized Potential Liquid Simulations (OPLS-2005) was used to minimize the structures for molecular docking calculations, and inbuilt scoring method of ranking the compounds based on docking score and Glide energy was used. Molecular dynamics simulations were conducted by Desmond implemented in Maestro. The hit compound was purchased from Enamine and tested against different cancer cell lines by MTT assay, apoptosis by western blotting technique, and by flow cytometry analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-024-05842-2DOI Listing

Publication Analysis

Top Keywords

protein-protein interaction
12
molecular dynamics
8
allosteric modulator
8
cancer cell
8
cell lines
8
allosteric
5
structure-based drug
4
drug design
4
design molecular
4
dynamics studies
4

Similar Publications

PEDV is a highly contagious enteric pathogen that can cause severe diarrhea and death in neonatal pigs. Despite extensive research, the molecular mechanisms of host's response to PEDV infection remain unclear. In this study, differentially expressed genes (DEGs), time-specific coexpression modules, and key regulatory genes associated with PEDV infection were identified.

View Article and Find Full Text PDF

Objective: He Shi Yu Lin Formula (HSYLF) is a clinically proven prescription for treating premature ovarian insufficiency (POI), and has shown a good curative effect. However, its molecular mechanisms are unclear. This study aimed to investigate the molecular mechanisms of HSYLF and clarify how network pharmacology analysis guides the design of animal experiments, including the selection of effective treatment doses and key targets, to ensure the relevance of the experimental results.

View Article and Find Full Text PDF

Interpretable machine learning-driven biomarker identification and validation for Alzheimer's disease.

Sci Rep

December 2024

Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, China.

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by limited effective treatments, underscoring the critical need for early detection and diagnosis to improve intervention outcomes. This study integrates various bioinformatics methodologies with interpretable machine learning to identify reliable biomarkers for AD diagnosis and treatment. By leveraging differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis (WGCNA), and construction of Protein-Protein Interaction (PPI) Networks, we meticulously analyzed the AD dataset from the GEO database to pinpoint Hub genes.

View Article and Find Full Text PDF

There is growing evidence that programmed cell death plays a significant role in the pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH). Anoikis is a newly discovered type of programmed death and has garnered great attention. However, the precise involvement of Anoikis in the progression of CTEPH remains poorly understood.

View Article and Find Full Text PDF

Bulk and Single-Cell Transcriptome Analyses Unravel Gene Signatures of Mitochondria-Associated Programmed Cell Death in Diabetic Foot Ulcer.

J Cell Mol Med

December 2024

Department of Orthopedics, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, P. R. China.

Mitochondrial programmed cell death (PCD) plays a critical role in the pathogenesis of diabetic foot ulcers (DFU). In this study, we performed a comprehensive transcriptome analysis to identify potential hub genes and key cell types associated with PCD and mitochondria in DFU. Using intersection analysis of PCD- and mitochondria-related genes, we identified candidate hub genes through protein-protein interaction and random forest analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!