AI Article Synopsis

  • Living organisms, including humans, often interact with harmful microorganisms like bacteria and viruses, prompting research into effective antibacterial solutions.
  • This study examines the effectiveness of silver nanoparticles derived from grape seed extract (AgNPs-GSE) combined with a red laser (405 nm) in reducing the presence of Escherichia coli and Staphylococcus aureus bacteria.
  • The results indicate that using a specific combination of AgNPs-GSE and laser treatment significantly decreases bacterial viability, achieving up to 79.53% reduction for E. coli and 85.04% for S. aureus, demonstrating a promising approach to combat bacterial infections.

Article Abstract

Living organisms, particularly humans, frequently encounter microorganisms such as bacteria, fungi, and viruses in their surroundings. Silver nanoparticles are widely used in biomedical devices because of their antibacterial and antiviral properties. The study evaluates the efficacy of red laser and silver nanoparticles from grape seed extract (AgNPs-GSE) in reducing Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria, which cause infections. The sample comprised three groups: a control group without laser irradiation (T0), Escherichia coli samples (A1 and A2) irradiated with a 405-nm diode laser at different times and concentrations of silver nanoparticles, and Staphylococcus aureus samples (A3 and A4) illuminated with a 405-nm diode laser at different times and concentrations. Bacteria in groups A2 and A4 were treated with a photosensitizer (PS) made from grape seed extracts, incubated for 10 min, and then irradiated for 90, 120, 150, and 180 s. The samples were cultured on TSA media, set at 37 °C, counted using a Quebec colony counter, and analyzed using ANOVA and Tukey tests with a significance level of p < 0.05. The study illustrated that the combination of 10 µl of AgNPs-GSE, exposure to a red laser at 405 nm, and an energy density of 3.44 J/cm effectively photoinactivated both Escherichia coli and Staphylococcus aureus bacteria. For Escherichia coli bacteria irradiated for 180 s with concentrations of 1 mM, 1.5 mM, and 2 mM AgNPs-GSE, bacterial viability decreased by 64.50%, 70.74%, and 79.53%, respectively. Similarly, Staphylococcus aureus bacteria, subjected to irradiation for 180 s with concentrations of 1 mM, 1.5 mM, and 2 mM AgNPs-GSE, demonstrated reductions in bacterial viability by 70.23%, 73.47%, and 85.04%, respectively. The findings from the present study indicate that at an energy density of 3.44 J/cm, it was possible to inactivate Escherichia coli by 79.53% and Staphylococcus aureus by 85.04%.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10103-024-03991-7DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
16
grape seed
12
staphylococcus aureus
12
escherichia coli
12
seed extract
8
405-nm diode
8
diode laser
8
laser times
8
times concentrations
8
antibacterial red
4

Similar Publications

Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core-satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity.

View Article and Find Full Text PDF

Blood carries some of the most valuable biomarkers for disease screening as it interacts with various tissues and organs in the body. Human blood serum is a reservoir of high molecular weight fraction (HMWF) and low molecular weight fraction (LMWF) proteins. The LMWF proteins are considered disease marker proteins and are often suppressed by HMWF proteins during analysis.

View Article and Find Full Text PDF

The development of a sensitive and selective silver nanoparticle assay for the quantitation of vitamin C (SNaP-C), as ascorbic acid (AA) and total ascorbic acid (TAA = AA + dehydroascorbic acid, DHAA), is described. Three assay parameters were investigated and optimized: (1) synthesis of silver nanoparticles (AgNPs) to produce a reliable enhanced localized surface plasmon resonance (LSPR) in the presence of specific added antioxidants; (2) ensuring long-term stability of AA and DHAA in aqueous solutions; and (3) SNaP-C assay conditions to allow for rapid analysis of samples (beverages) by monitoring the enhanced LSPR. The synthesis of AgNPs using soluble starch as a capping agent and d-arabinose as a reducing agent was optimized in a CEM Discover SP laboratory microwave.

View Article and Find Full Text PDF

Recently, researchers have used silver nanoparticles (AgNPs) coupled with humic acid (HA) as antimicrobial agents. Herein, AgNPs were prepared and coupled with humic acid for their antimicrobial activities. The as-prepared AgNPs coupled with humic acid (HA) were characterized by an atomic force microscope (AFM), X-ray powder diffraction (XRD), zeta potential, zeta sizer, Fourier-transform infrared (FT-IR) spectroscopy, and UV-VIS spectrophotometer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!