Facile Graphene Oxide Modification Method via Hydroxyl-yne Click Reaction for Ultrasensitive and Ultrawide Monitoring Pressure Sensors.

ACS Appl Mater Interfaces

School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.

Published: February 2024

Enhancing the durability and functionality of existing materials through sustainable pathways and appropriate structural design represents a time- and cost-effective strategy for the development of advanced wearable devices. Herein, a facile graphene oxide (GO) modification method via the hydroxyl-yne click reaction is present for the first time. By the click coupling between propiolate esters and hydroxyl groups on GO under mild conditions, various functional molecules are successfully grafted onto the GO. The modified GO is characterized by FTIR, XRD, TGA, XPS, and contact angle, proving significantly improved dispersibility in various solvents. Besides the high efficiency, high selectivity, and mild reaction conditions, this method is highly practical and accessible, avoiding the need for prefunctionalizations, metals, or toxic reagents. Subsequently, a rGO-PDMS sponge-based piezoresistive sensor developed by modified GO-P2 as the sensitive material exhibits impressive performance: high sensitivity (335 kPa, 0.8-150 kPa), wide linear range (>500 kPa), low detection limit (0.8 kPa), and long-lasting durability (>5000 cycles). Various practical applications have been demonstrated, including body joint movement recognition and real-time monitoring of subtle movements. These results prove the practicality of the methodology and make the rGO-PDMS sponge-based pressure sensor a real candidate for a wide array of wearable applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10859893PMC
http://dx.doi.org/10.1021/acsami.3c17172DOI Listing

Publication Analysis

Top Keywords

facile graphene
8
graphene oxide
8
oxide modification
8
modification method
8
method hydroxyl-yne
8
hydroxyl-yne click
8
click reaction
8
rgo-pdms sponge-based
8
reaction ultrasensitive
4
ultrasensitive ultrawide
4

Similar Publications

Pharmaceuticals are the new emerging challenge pollutants to removal from the aquatic environments. In this study, a series of reduced graphene oxide/carbon/calcium alginate (rGO/C/CA) aerogel was fabricated using an environmentally friendly freeze-drying method. The surface properties including surface textures, elemental contents, crystal structures, and functional groups of rGO/C/CA aerogel were investigated.

View Article and Find Full Text PDF

The NiCoO Nanosheets@Carbon fibers composites have been successfully synthesized by a facile co-electrodeposition process. The mesoporous NiCoO nanosheets aligned vertically on the surface of carbon fibers and crosslinked with each other, producing loosely porous nanostructures. These hybrid composite electrodes exhibit high specific capacitance in a three-electrode cell.

View Article and Find Full Text PDF

Facile Design of Highly Stretchable and Conductive Crumpled Graphene/NiS Films for Multifunctional Applications.

Small Methods

January 2025

Fujian Provincial Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, P. R. China.

The cost-effective and scalable synthesis and patterning of soft nanomaterial composites with improved electrical conductivity and mechanical stretchability remains challenging in wearable devices. This work reports a scalable, low-cost fabrication approach to directly create and pattern crumpled porous graphene/NiS nanocomposites with high mechanical stretchability and electrical conductivity through laser irradiation combined with electrodeposition and a pre-strain strategy. With modulated mechanical stretchability and electrical conductivity, the crumpled graphene/NiS nanocomposite can be readily patterned into target geometries for application in a standalone stretchable sensing platform.

View Article and Find Full Text PDF

Carbon aerogels, characterized by their high porosity and superior electrical performance, present significant potential for the development of highly sensitive pressure sensors. However, facile and cost-effective fabrication of biomass-based carbon aerogels that concurrently possess high sensitivity, high elasticity, and excellent fatigue resistance remains a formidable challenge. Herein, a piezoresistive sensor with a layered network microstructure (BCNF-rGO-CS) was successfully fabricated using bamboo nanocellulose fiber (BCNF), chitosan (CS), and graphene oxide (GO) as raw materials.

View Article and Find Full Text PDF

Study on the Synthesis and Electrochemical Properties of Nitrogen-Doped Graphene Quantum Dots.

Materials (Basel)

December 2024

Shandong Jinhong New Material Co. Ltd., Weifang 262100, China.

Nitrogen-doped graphene quantum dots (N-GQDs) are widely used in biosensing, catalysis, and energy storage due to their excellent conductivity, high specific surface area, unique quantum size effects, and optical properties. In this paper, we successfully synthesized N-GQDs using a facile hydrothermal approach and investigated the effects of different hydrothermal temperatures and times on the morphology and structure of N-GQDs. The results indicated that the size of N-GQDs gradually increased and they eventually aggregated into graphene fragments with increasing temperature or reaction time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!