Hydrophilic Biocompatible Fluorescent Organic Nanoparticles as Nanocarriers for Biosourced Photosensitizers for Photodynamic Therapy.

Nanomaterials (Basel)

Institut des Sciences Moléculaires (ISM, UMR5255), University of Bordeaux, Centre National de la Recherche Scientifique, Institut Polytechnique de Bordeaux, Bat A12, 351 Cours de la Libération, 33405 Talence, France.

Published: January 2024

Most photosensitizers of interest for photodynamic therapy-especially porphyrinoids and chlorins-are hydrophobic. To circumvent this difficulty, the use of nanocarriers is an attractive strategy. In this perspective, we have developed highly water-soluble and biocompatible fluorescent organic nanoparticles (FONPs) made from citric acid and diethyltriamine which are then activated by ethlynene diamine as nanoplatforms for efficient photosensitizers (PSs). Purpurin 18 (Pp18) was selected as a biosourced chlorin photosensitizer combining the efficient single oxygen generation ability and suitable absorption in the biological spectral window. The simple reaction of activated FONPs with Pp18, which contains a reactive anhydride ring, yielded nanoparticles containing both Pp18 and Cp6 derivatives. These functionalized nanoparticles combine solubility in water, high singlet oxygen generation quantum yield in aqueous media (0.72) and absorption both in the near UV region (FONPS) and in the visible region (Soret band approximately 420 nm as well as Q bands at 500 nm, 560 nm, 660 nm and 710 nm). The functionalized nanoparticles retain the blue fluorescence of FONPs when excited in the near UV region but also show deep-red or NIR fluorescence when excited in the visible absorption bands of the PSs (typically at 520 nm, 660 nm or 710 nm). Moreover, these nanoparticles behave as efficient photosensitizers inducing colorectal cancer cell (HCT116 and HT-29 cell lines) death upon illumination at 650 nm. Half maximal inhibitory concentration (IC50) values down to, respectively, 0.04 and 0.13 nmol/mL were observed showing the potential of FONPs[Cp6] for the PDT treatment of cancer. In conclusion, we have shown that these novel biocompatible nanoparticles, which can be elaborated from biosourced components, both show deep-red emission upon excitation in the red region and are able to produce singlet oxygen with high efficiency in aqueous environments. Moreover, they show high PDT efficiency on colorectal cancer cells upon excitation in the deep red region. As such, these functional organic nanoparticles hold promise both for PDT treatment and theranostics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10819872PMC
http://dx.doi.org/10.3390/nano14020216DOI Listing

Publication Analysis

Top Keywords

organic nanoparticles
12
biocompatible fluorescent
8
fluorescent organic
8
nanoparticles
8
efficient photosensitizers
8
oxygen generation
8
functionalized nanoparticles
8
singlet oxygen
8
660 710
8
colorectal cancer
8

Similar Publications

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Hyaluronic acid modified metal-organic frameworks loading cisplatin achieve combined chemodynamic therapy and chemotherapy for lung cancer.

Int J Biol Macromol

January 2025

Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China. Electronic address:

As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment.

View Article and Find Full Text PDF

Tobramycin nanoformulation for chronic pulmonary infections: From drug product definition to scale-up for preclinical evaluation.

Int J Pharm

January 2025

CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Kusudama Therapeutics SA, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Biogipuzkoa Health Research Institute, Group of Innovation, 20014 San Sebastian, Spain.

Cystic fibrosis (CF) is characterized by abnormal mucus hydration due to a defective CF Transmembrane Regulator (CFTR) protein, leading to the production of difficult-to-clear mucus. This causes airflow obstruction, recurrent infections, and respiratory complications. Chronic lung infections are the leading cause of death for CF patients and inhaled tobramycin is the first-in-line antibiotic treatment against these infections, mainly caused by Pseudomonas aeruginosa in adult patients.

View Article and Find Full Text PDF

Engineering conductive covalent-organic frameworks enable highly sensitive and anti-interference molecularly imprinted electrochemical biosensor.

Biosens Bioelectron

January 2025

Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:

Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!