Background: The current challenge in drug development lies in addressing the physicochemical issues that lead to low drug effectiveness. Solubility, a crucial physicochemical parameter, greatly influences various biopharmaceutical aspects of a drug, including dissolution rate, absorption, and bioavailability. Amorphous solid dispersion (ASD) has emerged as a widely explored approach to enhance drug solubility.

Objective: The objective of this review is to discuss and summarize the development of polyvinylpyrrolidone (PVP)-based amorphous solid dispersion in improving the physicochemical properties of drugs, with a focus on the use of PVP as a novel approach.

Methodology: This review was conducted by examining relevant journals obtained from databases such as Scopus, PubMed, and Google Scholar, since 2018. The inclusion and exclusion criteria were applied to select suitable articles.

Results: This study demonstrated the versatility and efficacy of PVP in enhancing the solubility and bioavailability of poorly soluble drugs. Diverse preparation methods, including solvent evaporation, melt quenching, electrospinning, coprecipitation, and ball milling are discussed for the production of ASDs with tailored characteristics.

Conclusion: PVP-based ASDs could offer significant advantages in the formulation strategies, stability, and performance of poorly soluble drugs to enhance their overall bioavailability. The diverse methodologies and findings presented in this review will pave the way for further advancements in the development of effective and tailored amorphous solid dispersions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10820039PMC
http://dx.doi.org/10.3390/polym16020286DOI Listing

Publication Analysis

Top Keywords

amorphous solid
16
solid dispersion
12
pvp-based amorphous
8
physicochemical properties
8
soluble drugs
8
advancing drug
4
drug delivery
4
delivery paradigms
4
paradigms polyvinyl
4
polyvinyl pyrolidone
4

Similar Publications

Due to the sulfur's atoms' propensity to form molecules and/or polymeric chains of various sizes and configuration, elemental sulfur possesses more allotropes and polymorphs than any other element at ambient conditions. This variability of the starting building blocks is partially responsible for its rich and fascinating phase diagram, with pressure and temperature changing the states of sulfur from insulating molecular rings and chains to semiconducting low- and high-density amorphous configurations to incommensurate superconducting metallic atomic phase. Here, using a fast compression technique, we demonstrate that the rapid pressurisation of liquid sulfur can effectively break the molecular ring structure, forming a glassy polymeric state of pure-chain molecules (Am-S).

View Article and Find Full Text PDF

Enhancing Carbon Monoxide Tolerance in Low-Temperature PEM Fuel Cells through Carbon Nitride Surface Modification.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Low-temperature proton exchange membrane fuel cells (PEMFCs) reuqire highly pure hydrogen gas due to their extreme sensitivity to carbon monoxide (CO) contamination, which poses a challenge for using cost-effective reformed hydrogen sources. To address this issue, we have developed a surface modification strategy by applying a 0.5-0.

View Article and Find Full Text PDF

All-solid-state batteries designed for operation under extreme cold conditions.

Nat Commun

January 2025

School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China.

A pressing need for enhancing lithium-ion battery (LIB) performance exists, particularly in ensuring reliable operation under extreme cold conditions. All-solid-state batteries (ASSBs) offer a promising solution to the challenges posed by conventional LIBs with liquid electrolytes in low-temperature environments. In this study, leveraging the benefits of amorphous solid-state electrolytes (SSEs) xLiN-TaCl (1 ≤ 3x ≤ 2), we develop ASSBs capable of functioning effectively under extreme cold conditions.

View Article and Find Full Text PDF

As the investigation of high efficiency thermally activated delayed fluorescence (TADF) materials become more mature, regulating the emission properties for single organic luminescence molecules has gained increasing interest recently. Herein, the donor-acceptor compounds F-AQ comprised of fluorene and anthraquinone is reported, and it exhibits a polymorphism with muti-color emission and TADF from high-level intersystem crossing (hRISC). The photodynamics and excited-state transient species were studied by femtosecond transient absorption (fs-TA) spectroscopy.

View Article and Find Full Text PDF

This study reports the synthesis and the experimental-theoretical characterization of a new coamorphous system consisting of ethionamide (ETH) and mandelic acid (MND) as a coformer. The solid dispersion was synthesized using the slow solvent evaporation method in an ethanolic medium. The structural, vibrational, and thermal properties of the system were characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!