A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regulating Microstructure and Macroscopic Properties in Saturated Salt Solutions Containing Disordered Anions and Cations by Magnetic Field. | LitMetric

AI Article Synopsis

  • Saturated salt solutions are important in various industries, but their disordered ion arrangements limit effectiveness.
  • This study uses magnetic fields to control ion arrangements in saturated KCl solutions, employing multiple scientific techniques to analyze changes.
  • Results show that weak magnetic fields can disrupt certain ion interactions while enhancing water-ion connections, potentially improving solubility and interactions with materials.

Article Abstract

Saturated aqueous salt solutions have diverse applications in food production, mineral processing, pharmaceuticals, and environmental monitoring. However, the random and disordered arrangement of ions in these solutions poses limitations across different fields. In this study, we employ magnetic fields to regulate the disordered arrangement by a comprehensive methodology combining contact angle measurement, Raman spectroscopy, X-ray diffraction, and molecular dynamics simulations on saturated KCl solutions. Our findings reveal that weak magnetic fields impede the formation of K-Cl contact pairs and disrupt hydrogen bond networks, particularly DDAA and free OH types. However, they facilitate the interaction between water molecules and ions, leading to an increase in the number of K-O and Cl-H contact pairs, along with an expansion in ion hydration radius. These changes affect macroscopic properties, including the interaction with solid substrates and potential solubility increases. Our experimental and simulation results mutually validate each other, contributing to a theoretical framework for studying magnetic field-material interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10819030PMC
http://dx.doi.org/10.3390/molecules29020543DOI Listing

Publication Analysis

Top Keywords

macroscopic properties
8
salt solutions
8
disordered arrangement
8
magnetic fields
8
contact pairs
8
regulating microstructure
4
microstructure macroscopic
4
properties saturated
4
saturated salt
4
solutions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!