Cow's milk (CM) is a healthy food consumed worldwide by individuals of all ages. Unfortunately, "lactase-deficient" individuals cannot digest milk's main carbohydrate, lactose, depriving themselves of highly beneficial milk proteins like casein, lactoalbumin, and lactoglobulin due to lactose intolerance (LI), while other individuals develop allergies specifically against these proteins (CMPA). The management of these conditions differs, and an inappropriate diagnosis or treatment may have significant implications for the patients, especially if they are infants or very young children, resulting in unnecessary dietary restrictions or avoidable adverse reactions. Omics technologies play a pivotal role in elucidating the intricate interactions between nutrients and the human body, spanning from genetic factors to the microbiota profile and metabolites. This comprehensive approach enables the precise delineation and identification of distinct cohorts of individuals with specific dietary requirements, so that tailored nutrition strategies can be developed. This is what is called personalized nutrition or precision nutrition (PN), the area of nutrition that focuses on the effects of nutrients on the genome, proteome, and metabolome, promoting well-being and health, preventing diseases, reducing chronic disease incidence, and increasing life expectancy. Here, we report the opinion of the scientific community proposing to replace the "one size fits all" approach with tailor-made nutrition programs, designed by integrating nutrigenomic data together with clinical parameters and microbiota profiles, taking into account the individual lactose tolerance threshold and needs in terms of specific nutrients intake. This customized approach could help LI patients to improve their quality of life, overcoming depression or anxiety often resulting from the individual perception of this condition as different from a normal state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10819418 | PMC |
http://dx.doi.org/10.3390/nu16020320 | DOI Listing |
Nutr Rev
January 2025
Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, United States.
Context: Prebiotics are often added to infant formulas to mimic the benefits of oligosaccharides found in human milk.
Objective: This systematic review and meta-analysis evaluated the effects of prebiotic-supplemented cow's milk-based formula on the gut microbiota, gut environment, growth parameters, and safety and tolerance in infants ≤6 months old, compared with a standard formula or human milk comparator.
Data Sources: Searches were performed in the PubMed, Embase, Cochrane Central Register of Controlled Trials, and ProQuest Dissertations & Theses databases.
J Infect Dev Ctries
December 2024
Department of Microbiology & Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.
Introduction: The emergence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) is a growing public health concern. The objective of this study was to determine the prevalence and multi-drug resistant (MDR) profiles of MRSA in goats in Bangladesh.
Methodology: A total of 150 samples from goats comprised of rectal swab (n = 50), nasal swab (n = 50), and milk (n = 50) were collected.
J Food Sci
January 2025
College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China.
Infant formulas are constantly being updated and upgraded, and N-glycans are functional glycans that have not been fully exploited to date. Commercial whey protein materials are often used as basic ingredients in infant formulas. Therefore, it is important to study N-glycans in commercial whey protein materials.
View Article and Find Full Text PDFBreastfeed Med
January 2025
Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark.
Rapid weight gain in infancy is associated with an increased risk of later adiposity. Very rarely, however, exclusively breastfed infants experience excessive weight gain (EWG) during the period of exclusive breastfeeding (EBF) when breast milk is the only source of nutrition. We investigated growth and body composition at 36 months in children experiencing EWG during EBF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!