We assessed the accuracy of a prototype radiation detector with a built in CMOS amplifier for use in dosimetry for high dose rate brachytherapy. The detectors were fabricated on two substrates of epitaxial high resistivity silicon. The radiation detection performance of prototypes has been tested by ion beam induced charge (IBIC) microscopy using a 5.5 MeV alpha particle microbeam. We also carried out the HDR Ir-192 radiation source tracking at different depths and angular dose dependence in a water equivalent phantom. The detectors show sensitivities spanning from (5.8 ± 0.021) × 10 to (3.6 ± 0.14) × 10 nC Gy mCi mm. The depth variation of the dose is within 5% with that calculated by TG-43. Higher discrepancies are recorded for 2 mm and 7 mm depths due to the scattering of secondary particles and the perturbation of the radiation field induced in the ceramic/golden package. Dwell positions and dwell time are reconstructed within ±1 mm and 20 ms, respectively. The prototype detectors provide an unprecedented sensitivity thanks to its monolithic amplification stage. Future investigation of this technology will include the optimisation of the packaging technique.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10818778 | PMC |
http://dx.doi.org/10.3390/s24020692 | DOI Listing |
J Dev Behav Pediatr
January 2025
Department of Pediatrics and Norton Children's Research Institute, School of Medicine, University of Louisville, Louisville, KY.
Objective: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social communication differences and restricted interests. One proposed biologic mechanism underlying ASD is oxidative stress, leading to the clinical use of glutathione based on anecdotal reports of improved behavior in autistic children. In this pilot study, we tested this observation using a randomized clinical trial format to collect preliminary data on glutathione safety and efficacy.
View Article and Find Full Text PDFBiostat Epidemiol
October 2024
Department of Epidemiology and Biostatistics, Indiana University, Bloomington, Indiana, US.
Wearable devices enable the continuous monitoring of physical activity (PA) but generate complex functional data with poorly characterized errors. Most work on functional data views the data as smooth, latent curves obtained at discrete time intervals with some random noise with mean zero and constant variance. Viewing this noise as homoscedastic and independent ignores potential serial correlations.
View Article and Find Full Text PDFNeurophotonics
January 2025
Weill Cornell Medicine, Department of Neurological Surgery, New York, United States.
Significance: Despite the availability of various anti-seizure medications, nearly 1/3 of epilepsy patients experience drug-resistant seizures. These patients are left with invasive surgical options that do not guarantee seizure remission. The development of novel treatment options depends on elucidating the complex biology of seizures and brain networks.
View Article and Find Full Text PDFAlzheimers Dement (Amst)
January 2025
Department of Psychiatry Rambam Health Care Campus Haifa Israel.
Background: Late-life depression (LLD) is a heterogenous disorder related to cognitive decline and neurodegenerative processes, raising a need for the development of novel biomarkers. We sought to provide preliminary evidence for acoustic speech signatures sensitive to LLD and their relationship to depressive dimensions.
Methods: Forty patients (24 female, aged 65-82 years) were assessed with the Geriatric Depression Scale (GDS).
Organic cocrystals have garnered significant research attention owing to their distinctive properties and promising applications. However, challenges in molecular structure design and control of intermolecular interactions continue to impede further advancements. In this study, two novel cocrystals were successfully formed from a series of synthesized benzotriazole derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!