Currently, Parkinson's Disease (PD) is diagnosed primarily based on symptoms by experts clinicians. Neuroimaging exams represent an important tool to confirm the clinical diagnosis. Among them, Brain Parenchyma Sonography (BPS) is used to evaluate the hyperechogenicity of Substantia Nigra (SN), found in more than 90% of PD patients. In this article, we exploit a new dataset of BPS images to investigate an automatic segmentation approach for SN that can increase the accuracy of the exam and its practicability in clinical routine. This study achieves state-of-the-art performance in SN segmentation of BPS images. Indeed, it is found that the modified U-Net network scores a Dice coefficient of 0.859 ± 0.037. The results presented in this study demonstrate the feasibility and usefulness of SN automatic segmentation in BPS medical images, to the point that this study can be considered as the first stage of the development of an end-to-end CAD (Computer Aided Detection) system. Furthermore, the used dataset, which will be further enriched in the future, has proven to be very effective in supporting the training of CNNs and may pave the way for future studies in the field of CAD applied to PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154334PMC
http://dx.doi.org/10.3390/jimaging10010001DOI Listing

Publication Analysis

Top Keywords

substantia nigra
8
brain parenchyma
8
bps images
8
automatic segmentation
8
segmentation bps
8
segmentation
4
segmentation substantia
4
nigra brain
4
parenchyma sonographic
4
images
4

Similar Publications

D1 Receptor Functional Asymmetry at Striatonigral Neurons: A Neurochemical and Behavioral Study in Male Wistar Rats.

J Neurosci Res

January 2025

Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.

Lateralization of motor behavior, a common phenomenon in humans and several species, is modulated by the basal ganglia, a site pointed out for the interhemispheric differences related to lateralization. Our study aims to shed light on the potential role of the striatonigral D1 receptor in functional asymmetry in normal conditions through neurochemical and behavioral means. We found that D1 receptor activation and D1/D3 receptor coactivation in striatonigral neurons leads to more cAMP production by adenylyl cyclase in the striatum and GABA release in their terminals in the right hemisphere compared to the left.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) of the brain, manifesting itself with both motor and non-motor symptoms. A critical element of this pathology is neuroinflammation, which triggers a harmful neurotoxic cycle, exacerbating cell death within the central nervous system. AD-16 (also known as GIBH-130) is a recently identified compound capable of reducing the expression of pro-inflammatory cytokines while increasing the expression of anti-inflammatory cytokines in Alzheimer's disease models.

View Article and Find Full Text PDF

Antioxidant PRDX3 gene therapy protects brain cells and prevents neurodegeneration in an animal model of Parkinson's disease.

Neuropeptides

December 2024

Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico. Electronic address:

Neurodegenerative diseases, including Parkinson's Disease (PD), are a significant global health challenge with no effective therapies to counteract neurodegeneration. Genetic and environmental factors lead to mitochondrial dysfunction and increased reactive oxygen species (ROS), resulting in oxidative stress. This stress reduces levels of Peroxiredoxin 3 (PRDX3), a key protein for maintaining ROS balance at the mitochondrial level, increasing the substantia nigra's susceptibility to damage.

View Article and Find Full Text PDF

Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.

View Article and Find Full Text PDF

Altered Nigral Amide Proton Transfer Imaging Signal Concordant With Motor Asymmetry in Parkinson's Disease: A Multipool CEST MRI Study.

NMR Biomed

February 2025

Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.

Asymmetry is a natural characteristic of Parkinson's disease (PD), which can be used to distinguish PD from atypical parkinsonism. Chemical exchange saturation transfer (CEST) has demonstrated value in reflecting the subtle changes related to neuron loss and abnormal protein accumulation in PD but has not been used to investigate asymmetry in PD. This study aimed to examine asymmetrical changes in the mesencephalic nucleus of PD patients with motor asymmetry using four-pool CEST analysis and to explore the relationship between imaging asymmetry and motor asymmetry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!