In recent times, there have been notable changes in cardiovascular medicine, propelled by the swift advancements in artificial intelligence (AI). The present work provides an overview of the current applications and challenges of AI in the field of heart failure. It emphasizes the "garbage in, garbage out" issue, where AI systems can produce inaccurate results with skewed data. The discussion covers issues in heart failure diagnostic algorithms, particularly discrepancies between existing models. Concerns about the reliance on the left ventricular ejection fraction (LVEF) for classification and treatment are highlighted, showcasing differences in current scientific perceptions. This review also delves into challenges in implementing AI, including variable considerations and biases in training data. It underscores the limitations of current AI models in real-world scenarios and the difficulty in interpreting their predictions, contributing to limited physician trust in AI-based models. The overarching suggestion is that AI can be a valuable tool in clinicians' hands for treating heart failure patients, as far as existing medical inaccuracies have been addressed before integrating AI into these frameworks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10817517PMC
http://dx.doi.org/10.3390/life14010145DOI Listing

Publication Analysis

Top Keywords

heart failure
16
artificial intelligence
8
heart
4
intelligence heart
4
failure
4
failure friend
4
friend foe?
4
foe? times
4
times notable
4
notable changes
4

Similar Publications

Risk analysis of cardiovascular toxicity in patients with lymphoma treated with CD19 CAR T cells.

J Transl Med

January 2025

Department of Hematology Oncology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou, China.

Background: Anti-CD19 chimeric antigen receptor (CAR) T cell therapy is a common, yet highly efficient, cellular immunotherapy for lymphoma. However, many recent studies have reported on its cardiovascular (CV) toxicity. This study analyzes the cardiotoxicity of CD19 CAR T cell therapy in the treatment of lymphoma for providing a more valuable reference for clinicians.

View Article and Find Full Text PDF

Introduction: Hypertension is among the most significant non-communicable public health issues worldwide. High blood pressure, or hypertension, has been associated with severe health consequences, including death, aneurysms, stroke, chronic renal disease, eye damage, heart attack, heart failure, peripheral artery disease, and vascular dementia. Consequently, this study aimed to investigate the predictors linked to survival time and the progression of blood pressure measurements in hypertensive patients.

View Article and Find Full Text PDF

TRADD-mediated pyroptosis contributes to diabetic cardiomyopathy.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.

Regulated cell death like pyroptosis is one vital cause of diabetic cardiomyopathy (DCM), which eventually leads to heart failure. Tumor necrosis factor (TNF) receptor-associated death domain protein (TRADD) is an adapter protein with multiple functions that participates in the pathophysiological progress of different cardiovascular disorders via regulating regulated cell death. Studies have shown that TRADD combines with receptor-interacting protein kinase 3 (RIPK3) and facilitates its activation, thereby mediating TNF-induced necroptosis.

View Article and Find Full Text PDF

SNX3 mediates heart failure by interacting with HMGB1 and subsequently facilitating its nuclear-cytoplasmic translocation.

Acta Pharmacol Sin

January 2025

National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.

View Article and Find Full Text PDF

Introduction: Real-life data on the long-term use of a maintenance immunosuppressive protocol in heart transplant patients using delayed Everolimus + Tacrolimus are scarce.

Methods: This is a retrospective study that included all heart transplant patients from 2011 to 2021 in two Spanish hospitals. In Hospital A, the preferred immunosuppressive strategy included Everolimus initiation at 2 months post-transplant combined with Tacrolimus and was compared with the results of Hospital B, where a standard Tacrolimus and Mycophenolate mofetil protocol was used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!