. Robotic-assisted thoracic surgery (RATS) is now standard for lung cancer treatment, offering advantages over traditional methods. However, RATS's minimally invasive approach poses challenges like limited visibility and tactile feedback, affecting surgeons' navigation through com-plex anatomy. To enhance preoperative familiarization with patient-specific anatomy, we devel-oped a virtual reality (VR) surgical navigation system. Using head-mounted displays (HMDs), this system provides a comprehensive, interactive view of the patient's anatomy pre-surgery, aiming to improve preoperative simulation and intraoperative navigation. . We integrated 3D data from preoperative CT scans into Perspectus VR Education software, displayed via HMDs for in-teractive 3D reconstruction of pulmonary structures. This detailed visualization aids in tailored preoperative resection simulations. During RATS, surgeons access these 3D images through Tile-Pro multi-display for real-time guidance. . The VR system enabled precise visualization of pulmonary structures and lesion relations, enhancing surgical safety and accuracy. The HMDs offered true 3D interaction with patient data, facilitating surgical planning. . VR sim-ulation with HMDs, akin to a robotic 3D viewer, offers a novel approach to developing robotic surgical skills. Integrated with routine imaging, it improves preoperative planning, safety, and accuracy of anatomical resections. This technology particularly aids in lesion identification in RATS, optimizing surgical outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10817249PMC
http://dx.doi.org/10.3390/jcm13020611DOI Listing

Publication Analysis

Top Keywords

virtual reality
8
preoperative planning
8
robotic-assisted thoracic
8
thoracic surgery
8
pulmonary structures
8
safety accuracy
8
preoperative
6
surgical
5
developing virtual
4
reality simulation
4

Similar Publications

A Randomized, Controlled Trial of In-Hospital Use of Virtual Reality to Reduce Preoperative Anxiety Prior to Cardiac Surgery.

Mayo Clin Proc

January 2025

Departments of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA; Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA. Electronic address:

Objective: To study the effectiveness of virtual reality (VR) in reducing anxiety levels in patients undergoing first-time sternotomy for cardiac surgery.

Patients And Methods: A total of 100 adult patients scheduled for cardiac surgery at Mayo Clinic in Rochester, Minnesota, USA, was recruited from April 19, 2022, to October 12, 2022. Before surgery, patients wore a physiological monitor to record vital signs.

View Article and Find Full Text PDF

Toward structured abdominal examination training using augmented reality.

Int J Comput Assist Radiol Surg

January 2025

Faculty of Computer Science and Research Campus STIMULATE, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany.

Purpose: Structured abdominal examination is an essential part of the medical curriculum and surgical training, requiring a blend of theory and practice from trainees. Current training methods, however, often do not provide adequate engagement, fail to address individual learning needs or do not cover rare diseases.

Methods: In this work, an application for structured Abdominal Examination Training using Augmented Reality (AETAR) is presented.

View Article and Find Full Text PDF

Active transportation, such as cycling, improves mobility and general health. However, statistics reveal that in low- and middle-income countries, male and female cycling participation rates differ significantly. Existing literature highlights that women's willingness to use bicycles is significantly influenced by their perception of security.

View Article and Find Full Text PDF

Pedestrians use visual cues (i.e., gaze) to communicate with the other road users, and visual attention towards the surrounding environment is essential to be situationally aware and avoid oncoming conflicts.

View Article and Find Full Text PDF

In this study we have used a highly immersive virtual reality (VR) cycling environment where incongruence between virtual hill gradient (created by visual gradient and bike tilt angle) and actual workload (pedalling resistance) can experimentally manipulate perception of exercise effort. This therefore may provide a method to examine the role of effort perception in cardiorespiratory control during exercise. Twelve healthy untrained participants (7 men, age 26 ± 5 years) were studied during five visits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!