Bacterial infections are a growing global healthcare concern, as an estimated annual 4.95 million deaths are associated with antimicrobial resistance (AMR). Methicillin-resistant is one of the deadliest pathogens and a high-priority pathogen according to the World Health Organization. Peptidoglycan hydrolases (PGHs) of phage origin have been postulated as a new class of antimicrobials for the treatment of bacterial infections, with a novel mechanism of action and no known resistances. The modular architecture of PGHs permits the creation of chimeric PGH libraries. In this study, the chimeric enzyme MEndoB was selected from a library of staphylococcal PGHs based on its rapid and sustained activity against staphylococci in human serum. The benefit of the presented screening approach was illustrated by the superiority of MEndoB in a head-to-head comparison with other PGHs intended for use against staphylococcal bacteremia. MEndoB displayed synergy with antibiotics and rapid killing in human whole blood with complete inhibition of re-growth over 24 h at low doses. Successful treatment of -infected zebrafish larvae with MEndoB provided evidence for its effectiveness. This was further confirmed in a lethal systemic mouse infection model in which MEndoB significantly reduced loads and tumor necrosis factor alpha levels in blood in a dose-dependent manner, which led to increased survival of the animals. Thus, the thorough lead candidate selection of MEndoB resulted in an outstanding second-generation PGH with , and results supporting further development.IMPORTANCEOne of the most pressing challenges of our era is the rising occurrence of bacteria that are resistant to antibiotics. Staphylococci are prominent pathogens in humans, which have developed multiple strategies to evade the effects of antibiotics. Infections caused by these bacteria have resulted in a high burden on the health care system and a significant loss of lives. In this study, we have successfully engineered lytic enzymes that exhibit an extraordinary ability to eradicate staphylococci. Our findings substantiate the importance of meticulous lead candidate selection to identify therapeutically promising peptidoglycan hydrolases with unprecedented activity. Hence, they offer a promising new avenue for treating staphylococcal infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865858 | PMC |
http://dx.doi.org/10.1128/mbio.02540-23 | DOI Listing |
Sci Rep
December 2024
Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
This paper introduces an evidence-based, design-of-experiments (DoE) approach to analyze and optimize drug delivery systems, ensuring that release aligns with the therapeutic window of the medication. First, the effective factors and release data of the system are extracted from the literature and meta-analytically undergo regression modeling. Then, the interaction and correlation of the factors to each other and the release amount are quantitatively assessed.
View Article and Find Full Text PDFTrials
December 2024
Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Vancomycin, an antibiotic with activity against methicillin-resistant Staphylococcus aureus (MRSA), is frequently included in empiric treatment for community-acquired pneumonia (CAP) despite the fact that MRSA is rarely implicated in CAP. Conducting polymerase chain reaction (PCR) testing on nasal swabs to identify the presence of MRSA colonization has been proposed as an antimicrobial stewardship intervention to reduce the use of vancomycin. Observational studies have shown reductions in vancomycin use after implementation of MRSA colonization testing, and this approach has been adopted by CAP guidelines.
View Article and Find Full Text PDFVet Clin North Am Small Anim Pract
December 2024
College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 408 Raymond Stotzer Parkway, College Station, TX 77845, USA. Electronic address:
Canine atopic dermatitis (cAD) and feline atopic skin syndrome are inflammatory and pruritic skin diseases with both environmental and genetic factors. Genetic factors may include barrier defects and a predisposition to mount T helper 2 lymphocyte immune response when allergens are encountered. These diseases have repeatable patterns of skin and ear inflammation and commonly lead to Staphylococcal and Malassezia skin and ear infections.
View Article and Find Full Text PDFSince the era of the widespread introduction of antibiotics into the human sphere of activity, the problem of antimicrobial resistance has become an urgent and very important topic around the world. Recently, coagulasonegative staphylococci (CoNS), which are representatives of opportunistic microorganisms of the microbiome of the skin and mucous membranes of healthy people, have made a certain contribution to its progression. For a long time, they did not pose a threat to patients, but in recent decades among microorganisms they have been seeded in more than two-thirds of patients with postoperative mediastinitis, catheter-associated infections, as well as from wounds of the neck vessels and the inguinal region separated by pacemaker beds.
View Article and Find Full Text PDFVet Res Commun
December 2024
Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
Camel mastitis especially caused by Staphylococcus aureus (S. aureus), is a major risk to animal health and milk production. The current investigation evaluated the antibiotic susceptibility and virulence factors of S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!