A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stretchable Magneto-Mechanical Configurations with High Magnetic Sensitivity Based on "Gel-Type" Soft Rubber for Intelligent Applications. | LitMetric

Stretchable Magneto-Mechanical Configurations with High Magnetic Sensitivity Based on "Gel-Type" Soft Rubber for Intelligent Applications.

Gels

School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea.

Published: January 2024

"Gel-type" soft and stretchable magneto-mechanical composites made of silicone rubber and iron particles are in focus because of their high magnetic sensitivity, and intelligence perspective. The "intelligence" mentioned here is related to the "smartness" of these magneto-rheological elastomers (MREs) to tune the "mechanical stiffness" and "output voltage" in energy-harvesting applications by switching magnetic fields. Hence, this work develops "gel-type" soft composites based on rubber reinforced with iron particles in a hybrid with piezoelectric fillers such as barium titanate. A further aspect of the work relies on studying the mechanical stability of intelligence and the stretchability of the composites. For example, the stretchability was 105% (control), and higher for 158% (60 per 100 parts of rubber (phr) of barium titanate, BaTiO), 149% (60 phr of electrolyte iron particles, EIP), and 148% (60 phr of BaTiO + EIP hybrid). Then, the magneto-mechanical aspect will be investigated to explore the magnetic sensitivity of these "gel-type" soft composites with a change in mechanical stiffness under a magnetic field. For example, the anisotropic effect was 14.3% (60 phr of EIP), and 4.4% (60 phr of hybrid). Finally, energy harvesting was performed. For example, the isotropic samples exhibit ~20 mV (60 phr of BaTiO), ~5.4 mV (60 phr of EIP), and ~3.7 mV (60 phr of hybrid). However, the anisotropic samples exhibit ~5.6 mV (60 phr of EIP), and ~8.8 mV (60 phr of hybrid). In the end, the composites prepared have three configurations, namely one with electro-mechanical aspects, another with magnetic sensitivity, and a third with both features. Overall, the experimental outcomes will make fabricated composites useful for different intelligent and stretchable applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815761PMC
http://dx.doi.org/10.3390/gels10010080DOI Listing

Publication Analysis

Top Keywords

magnetic sensitivity
16
"gel-type" soft
16
iron particles
12
phr eip
12
phr hybrid
12
phr
10
stretchable magneto-mechanical
8
high magnetic
8
soft composites
8
barium titanate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!