A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Molecular Mechanism Underlying the Therapeutic Effect of Dihydromyricetin on Type 2 Diabetes Mellitus Based on Network Pharmacology, Molecular Docking, and Transcriptomics. | LitMetric

Type 2 diabetes mellitus (T2DM) is a chronic and complex disease, and traditional drugs have many side effects. The active compound dihydromyricetin (DHM), derived from natural plants, has been shown in our previous study to possess the potential for reducing blood glucose levels; however, its precise molecular mechanism remains unclear. In the present study, network pharmacology and transcriptomics were performed to screen the molecular targets and signaling pathways of DHM disturbed associated with T2DM, and the results were partially verified by molecular docking, RT-PCR, and Western blotting at in vivo levels. Firstly, the effect of DHM on blood glucose, lipid profile, and liver oxidative stress in db/db mice was explored and the results showed that DHM could reduce blood glucose and improve oxidative stress in the liver. Secondly, GO analysis based on network pharmacology and transcriptomics results showed that DHM mainly played a significant role in anti-inflammatory, antioxidant, and fatty acid metabolism in biological processes, on lipoprotein and respiratory chain on cell components, and on redox-related enzyme activity, iron ion binding, and glutathione transferase on molecular functional processes. KEGG system analysis results showed that the PI3K-Akt signaling pathway, IL17 signaling pathway, HIF signaling pathway, MAPK signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and TNF signaling pathway were typical signaling pathways disturbed by DHM in T2DM. Thirdly, molecular docking results showed that VEGFA, SRC, HIF1A, ESR1, KDR, MMP9, PPARG, and MAPK14 are key target genes, five genes of which were verified by RT-PCR in a dose-dependent manner. Finally, Western blotting results revealed that DHM effectively upregulated the expression of AKT protein and downregulated the expression of MEK protein in the liver of db/db mice. Therefore, our study found that DHM played a therapeutic effect partially by activation of the PI3K/AKT/MAPK signaling pathway. This study establishes the foundation for DHM as a novel therapeutic agent for T2DM. Additionally, it presents a fresh approach to utilizing natural plant extracts for chemoprevention and treatment of T2DM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815645PMC
http://dx.doi.org/10.3390/foods13020344DOI Listing

Publication Analysis

Top Keywords

signaling pathway
28
network pharmacology
12
molecular docking
12
blood glucose
12
dhm
9
signaling
9
molecular mechanism
8
type diabetes
8
diabetes mellitus
8
based network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!