AI Article Synopsis

Article Abstract

Grapevine roots, as a side-stream of a vineyard, are a sustainable resource for the recovery of oligomeric stilbenoids, such as the bioactive r-viniferin. The aim of this study is to evaluate an in silico-supported method, based on the Conductor-like Screening Model for Real Solvents (COSMO-RS), for selection of environmentally friendly natural deep eutectic solvents (NADES) with regard to the extraction of grapevine roots. The most suitable NADES system for ultrasonic-assisted extraction of r-viniferin was choline chloride/1,2-propanediol. The optimal extraction parameters for r-viniferin were determined using single-factor experiments as follows: choline chloride/1,2-propanediol 1/2 mol/mol, 10 wt% HO, biomass/NADES ratio 1/10 g/g, and 10 min extraction time. Under optimized conditions, the extraction yield of r-viniferin from grapevine roots reached 76% of the total r-viniferin content. Regarding stability, stilbenoids in choline chloride/1,2-propanediol remained stable during 128 days of storage at ambient temperature. However, fructose/lactic acid-based NADES were observed to degrade stilbenoids; therefore, the removal of the NADES will be of interest, with a suitable method implemented using Amberlite XAD-16N resin. As green solvents, the NADES have been used as effective and environmentally friendly extractants of stilbenoid-containing extracts from grapevine roots for potential applications in the cosmetic and pharmaceutical industry or as nutraceuticals in the food industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815275PMC
http://dx.doi.org/10.3390/foods13020324DOI Listing

Publication Analysis

Top Keywords

grapevine roots
20
solvents nades
12
choline chloride/12-propanediol
12
ultrasonic-assisted extraction
8
oligomeric stilbenoids
8
natural deep
8
deep eutectic
8
eutectic solvents
8
extracts grapevine
8
environmentally friendly
8

Similar Publications

Chlormequat chloride (CCC) has been demonstrated to inhibit plant growth and strengthen seedlings. The present study demonstrated that the root growth of grapevine seedlings was significantly enhanced by the application of CCC treatment. Nevertheless, the precise mechanism by which CCC regulates plant root growth remains to be elucidated.

View Article and Find Full Text PDF

Ethylene increases the NaHCO stress tolerance of grapevines partially via the VvERF1B-VvMYC2-VvPMA10 pathway.

Plant Biotechnol J

January 2025

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, China.

Here, we evaluated the role of ethylene in regulating the NaHCO stress tolerance of grapevines and clarified the mechanism by which VvERF1B regulates the response to NaHCO stress. The exogenous application of ACC and VvACS3 overexpression in grapevines and grape calli revealed that ethylene increased NaHCO stress tolerance, and this was accompanied by increased plasma membrane H-ATPase (PMA) activity. The expression of VvERF1B was strongly induced by ACC, and overexpression of this gene in grapevines conferred increased NaHCO stress tolerance and enhanced PMA activity and H and oxalate secretion.

View Article and Find Full Text PDF

Controlled environment farming (CEF) systems, including tunnel houses, glasshouses, and vertical farms, are expanding worldwide. As the industry scales, growers need a broader range of crops that are adapted to CEF systems to take full advantage of the potential to increase yields and decrease weather-related risks. Dwarf grapevines (microvines) are ideal candidates for CEF due to their high economic value, phenotype, and phenology.

View Article and Find Full Text PDF

Although plant-derived smoke solutions (SSs) have exhibited growth-promoting properties in various plant species, their potential role in mitigating heavy metal stress, specifically in grapevines, has remained unexplored and unreported. This knowledge gap prompted the present study to evaluate the efficacy of foliar application of SSs derived from vineyard pruning waste at concentrations of 0%, 0.5%, 1%, and 2% in mitigating Cadmium (Cd) phytotoxicity in grape saplings.

View Article and Find Full Text PDF
Article Synopsis
  • *This study explored the long-term impact of biochar on grapevine roots and soil properties, revealing that while biochar improves soil quality (pH, nutrient content, and water retention), it can also reduce the production of fibrous and pioneer roots over time.
  • *The results indicate that biochar promotes a more efficient root system, allowing grapevines to allocate resources towards growth and productivity, which might be beneficial for sustainable agricultural practices in the context of climate change.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!