Wear and tear are natural processes for all living and non-living bodies. All living cells and organisms are metabolically active to generate energy for their routine needs, including for survival. In the process, the cells are exposed to oxidative load, metabolic waste, and bye-products. In an organ, the living non-neuronal cells divide and replenish the lost or damaged cells; however, as neuronal cells normally do not divide, they need special feature(s) for their protection, survival, and sustenance for normal functioning of the brain. The neurons grow and branch as axons and dendrites, which contribute to the formation of synapses with near and far neurons, the basic scaffold for complex brain functions. It is necessary that one or more basic and instinct physiological process(es) (functions) is likely to contribute to the protection of the neurons and maintenance of the synapses. It is known that rapid eye movement sleep (REMS), an autonomic instinct behavior, maintains brain functioning including learning and memory and its loss causes dysfunctions. In this review we correlate the role of REMS and its loss in synaptogenesis, memory consolidation, and neuronal degeneration. Further, as a mechanism of action, we will show that REMS maintains noradrenaline (NA) at a low level, which protects neurons from oxidative damage and maintains neuronal growth and synaptogenesis. However, upon REMS loss, the level of NA increases, which withdraws protection and causes apoptosis and loss of synapses and neurons. We propose that the latter possibly causes REMS loss associated neurodegenerative diseases and associated symptoms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813190PMC
http://dx.doi.org/10.3390/brainsci14010008DOI Listing

Publication Analysis

Top Keywords

rems loss
12
mechanism action
8
cells divide
8
synapses neurons
8
cells
5
neurons
5
rems
5
loss
5
rem sleep
4
sleep loss-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!