Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to substantial improvements in read accuracy, third-generation long-read sequencing holds great potential in blood group diagnostics, particularly in cases where traditional genotyping or sequencing techniques, primarily targeting exons, fail to explain serological phenotypes. In this study, we employed Oxford Nanopore sequencing to resolve all genotype-phenotype discrepancies in the Kidd blood group system (JK, encoded by ) observed over seven years of routine high-throughput donor genotyping using a mass spectrometry-based platform at the Blood Transfusion Service, Zurich. Discrepant results from standard serological typing and donor genotyping were confirmed using commercial PCR-SSP kits. To resolve discrepancies, we amplified the entire coding region of (~24 kb, exons 3 to 10) in two overlapping long-range PCRs in all samples. Amplicons were barcoded and sequenced on a MinION flow cell. Sanger sequencing and bridge-PCRs were used to confirm findings. Among 11,972 donors with both serological and genotype data available for the Kidd system, we identified 10 cases with unexplained conflicting results. Five were linked to known weak and null alleles caused by variants not included in the routine donor genotyping. In two cases, we identified novel null alleles on the (Gly40Asp; c.119G>A) and (Gly242Glu; c.725G>A) haplotypes, respectively. Remarkably, the remaining three cases were associated with a yet unknown deletion of ~5 kb spanning exons 9-10 of the allele, which other molecular methods had failed to detect. Overall, nanopore sequencing demonstrated reliable and accurate performance for detecting both single-nucleotide and structural variants. It possesses the potential to become a robust tool in the molecular diagnostic portfolio, particularly for addressing challenging structural variants such as hybrid genes, deletions and duplications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813000 | PMC |
http://dx.doi.org/10.3390/biomedicines12010225 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!