pH-responsive micelles with positive charges are challenged by their significant effect on the cells/proteins and compromise their final fate due to electrostatic interactions. As one of the promising strategies, zwitterion incorporation in micelles has attracted considerable attention and displayed improved protein adsorption and blood circulation performances. However, previous reports in this field have been mostly limited in hemolysis for studying blood behaviour and lack a comprehensive understanding of their interactions with blood components. Herein, we present a prelimilary study on the effect of zwitterionic sulfobetaine incorporation on blood behaviour, phagocytosis, and biodistribution of pH-responsive micelles with positive charges. Amphiphilic triblock copolymers, namely poly(ε-caprolactone)--poly(,-diethylaminoethyl methacrylate)-(-(3-sulfopropyl--methacryloxyethy-,-diethylammonium betaine)) (PCL-PDEAPS, = 2, 6, 10), containing different numbers of sulfobetaine groups were synthesized through four steps to prepare the pH-responsive micelles with positive charges. The effect of the sulfobetaine incorporation displayed different profiles, , the micelles had no effect on RBC aggregation, thrombin time (TT), and platelet aggregation, while the cytotoxicity, hemolysis, RBC deformability, activated partial thromboplastin time (APTT), prothrombin time (PT), platelet activation, protein (albumin, fibrinogen, plasma) adsorption, phagocytosis, and biodistribution decreased with the increase in the sulfobetaine number, in which the transition mainly occurred at a sulfobetaine/tertiary amine group ratio of 3/7-1/1 compared to that of the mPEG control. In addition, the micelles displayed a strong inhibitory effect on the intrinsic coagulation pathway, which was associated with a significant decrease in the coagulation factor activity. Based on these findings, the related mechanism is discussed and proposed, which can aid the rational design of pH-responsive micelles for improved therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3tb02477f | DOI Listing |
J Colloid Interface Sci
January 2025
College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041 China. Electronic address:
We developed antibiotic-based micelles with bone-targeting and charge-switchable properties (P-CASMs) for treating infectious osteomyelitis. The amphiphilic molecules are formed by combining ciprofloxacin (CIP) with ligand 1 through a mild salifying reaction, and spontaneously self-assemble into antibiotic-based micelles (ASMs) in aqueous solution. Acrylate groups on ligand 1 enable cross-linking of ASMs with pentaerythritol tetra(mercaptopropionate) via a click reaction, forming pH-sensitive cross-linked micelles (CASMs).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry, University of Hyderabad, Gachibowli-500046, Hyderabad, Telangana State, India.
The versatile nature of the urease enzyme makes it a valuable asset in biological and industrial contexts. The creation of bioconjugates using enzyme-polymer combinations has extended the shelf life and stability of urease. A triblock copolymer, PAM-co-PDPA-co-PMAA@urease (ADM@urease), was synthesized using acrylamide (AM), 2,5-dioxopyrrolidin-1-ylacrylate (DPA), methacrylic acid (MAA), and urease via the RAFT-Grafting-To polymerization method.
View Article and Find Full Text PDFNano Lett
January 2025
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
cGAS-STING pathway activation has attracted considerable attention in antitumor immunotherapy, but clinical outcomes lag behind expectations due to overlooked negative feedback mechanisms. Here, we determine that STING activation promotes tumor stemness, which weakens the efficacy of STING-based therapies, presenting a double-edged sword. To address this therapeutic paradox, a simple metal-phenolic polymeric micelle (HMQ) was developed, in which Mn (a STING agonist) is coordinated with quercetin (a stemness inhibitor) and hyaluronic acid (HA), to unlock the full therapeutic potential of the cGAS-STING pathway.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:
The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
Dental caries, driven by dysbiosis in oral flora and acid accumulation, pose a significant threat to oral health. Traditional methods of managing dental biofilms using broad-spectrum antimicrobials and fluoride face limitations such as microbial resistance. Natural products, with their antimicrobial properties, present a promising solution for managing dental caries, yet their clinical application faces significant challenges, including low bioavailability, variable efficacy, and patient resistance due to sensory properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!