Heteropolyacid-Catalyzed Phosphorylation of Secondary Aromatic Alcohols with H-Phosphine Oxides in DMC: A Simple Protocol for C-P Bond Formation.

J Org Chem

Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China.

Published: February 2024

We successfully achieved the phosphorylation of secondary aromatic alcohols with H-phosphine oxides (less developed system) using phosphotungstic acid as a catalyst in dimethyl carbonate. The system was simple and environmentally friendly and showed better activity than traditional Lewis or Brønsted acids such as FeCl, -TsOH·HO, etc., generating up to a 97% isolated yield. Control experiments indicated that the reaction did not occur through the radical pathway, and ethers and carbocation were the key intermediates in the pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.3c02409DOI Listing

Publication Analysis

Top Keywords

phosphorylation secondary
8
secondary aromatic
8
aromatic alcohols
8
alcohols h-phosphine
8
h-phosphine oxides
8
heteropolyacid-catalyzed phosphorylation
4
oxides dmc
4
dmc simple
4
simple protocol
4
protocol c-p
4

Similar Publications

Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally, with a persistently low five-year survival rate of only 14-17%. High rates of metastasis contribute significantly to the poor prognosis of NSCLC, in which inflammation plays an important role by enhancing tumor growth, angiogenesis, and metastasis. Targeting inflammatory pathways within cancer cells may thus represent a promising strategy for inhibiting NSCLC metastasis.

View Article and Find Full Text PDF

: Traumatic brain injury (TBI) occurs after a sudden mechanical force to the skull and represents a significant public health problem. Initial brain trauma triggers secondary pathophysiological processes that induce structural and functional impairment of the central nervous system, even in the regions distant to the lesion site. Later in life, these changes can be manifested as neurodegenerative sequalae that commonly involve proteinopathies, such as transactive DNA-binding protein 43 (TDP-43).

View Article and Find Full Text PDF

The retina, a crucial neural tissue, is responsible for transforming light signals into visual information, a process that necessitates a significant amount of energy. Mitochondria, the primary powerhouses of the cell, play an integral role in retinal physiology by fulfilling the high-energy requirements of photoreceptors and secondary neurons through oxidative phosphorylation. In a healthy state, mitochondria ensure proper visual function by facilitating efficient conversion and transduction of visual signals.

View Article and Find Full Text PDF

Chemical communication between marine bacteria and their algal hosts drives population dynamics and ultimately determines the fate of major biogeochemical cycles in the ocean. To gain deeper insights into this small molecule exchange, we screened niche-specific metabolites as potential modulators of the secondary metabolome of the roseobacter, . Metabolomic analysis led to the identification of a group of cryptic lipids that we have termed roseoceramides.

View Article and Find Full Text PDF

Ginsenosides are the most important secondary metabolites of ginseng. Ginseng has developed certain insect resistance properties during the course of evolutionary environmental adaptation. However, the mechanism underlying the insect resistance of ginseng is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!