The DNA intelligence tool, DNA methylation-based age prediction, can help identify disaster victims and suspects in criminal investigations. In this study, we developed a costal cartilage-based age prediction tool that uses massive parallel sequencing (MPS) of age-associated DNA methylation markers. Costal cartilage samples were obtained from 85 deceased Koreans, aged between 26 and 89 years. An MPS library was prepared using two rounds of multiplex polymerase chain reaction of nine genes (TMEM51, MIR29B2CHG, EDARADD, FHL2, TRIM59, ELOVL2, KLF14, ASPA, and PDE4C). The DNA methylation status of 45 CpG sites was determined and used to train an age prediction model via stepwise regression analysis. Nine CpGs in MIR29B2CHG, FHL2, TRIM59, ELOVL2, KLF14, and ASPA were selected for regression model construction. A leave-one-out cross-validation analysis revealed the high performance of the age prediction model, with a mean absolute error (MAE) and root mean square error of 4.97 and 6.43 years, respectively. Additionally, our model showed good performance with a MAE of 6.06 years in the analysis of data of 181 costal cartilage samples collected from Europeans. Our model effectively estimates the age of deceased individuals using costal cartilage samples; therefore, it can be a valuable forensic tool for disaster victim and missing person investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1556-4029.15470DOI Listing

Publication Analysis

Top Keywords

age prediction
20
costal cartilage
16
cartilage samples
12
disaster victims
8
dna methylation
8
fhl2 trim59
8
trim59 elovl2
8
elovl2 klf14
8
klf14 aspa
8
prediction model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!