Background: Deep vein thrombosis (DVT), referred to as venous thromboembolism, is the third most frequent cardiovascular disease. Endothelial progenitor cells (EPCs) contribute to the recanalization of DVT. Astragaloside IV (AS-IV) has been suggested to have angiogenesis-enhancing effects. Here, we investigate the roles and mechanisms of AS-IV in EPCs and DVT.

Methods: The experimental DVT model was established by inferior vena cava stenosis in rats. EPCs were collected from patients with DVT. Transwell assays were performed to detect cell migration. Tube formation was determined using Matrigel basement membrane matrix and ImageJ software. The thrombus weight and length were measured. Pathological changes were examined by hematoxylin-eosin staining. The production of proinflammatory cytokines was estimated by ELISA. The level of PI3K/AKT-related proteins was measured by western blotting.

Results: AS-IV administration facilitated the migrative and angiogenic functions of human EPCs . Additionally, AS-IV inhibited thrombosis and repressed the infiltration of leukocytes into the thrombus and the production of proinflammatory cytokines in rats. Mechanistically, AS-IV inactivated PI3K/AKT signaling in rats.

Conclusion: AS-IV prevents thrombus in an experimental DVT model by facilitating EPC angiogenesis and decreasing inflammation through inactivation of PI3K/AKT signaling.

Download full-text PDF

Source
http://dx.doi.org/10.14670/HH-18-704DOI Listing

Publication Analysis

Top Keywords

pi3k/akt signaling
12
endothelial progenitor
8
inactivation pi3k/akt
8
experimental dvt
8
dvt model
8
production proinflammatory
8
proinflammatory cytokines
8
as-iv
6
dvt
5
astragaloside induces
4

Similar Publications

Objectives: Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.

View Article and Find Full Text PDF

Sodium valproate enhances efficacy of NKG2D CAR-T cells against glioblastoma.

Front Immunol

January 2025

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) is a harmful environmental contaminant known to disrupt gut microbiota and cause health problems. In recent years, the role of vitamin B6 (VB6) in maintaining intestinal and reproductive health has attracted much attention. AFB1 has been found to damage the intestinal barrier and cause inflammation by disrupting the intestinal microbiota, particularly by increasing the abundance of .

View Article and Find Full Text PDF

Metabolic profiles and potential antioxidant mechanisms of hawk tea.

Sci Rep

January 2025

Department of Food Science and Engineering, Moutai Institute, Renhuai, 564502, People's Republic of China.

Hawk tea has received increasing attention for its unique flavor and potential health benefits, with antioxidant function being one of its significant bioactivities. However, the metabolic profiles, potential antioxidant components, and action mechanisms of different types of hawk tea are still unclear. In this study, the chemical components of five hawk teas were determined using untargeted metabolomics.

View Article and Find Full Text PDF

Raptin, a sleep-induced hypothalamic hormone, suppresses appetite and obesity.

Cell Res

January 2025

Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.

Sleep deficiency is associated with obesity, but the mechanisms underlying this connection remain unclear. Here, we identify a sleep-inducible hypothalamic protein hormone in humans and mice that suppresses obesity. This hormone is cleaved from reticulocalbin-2 (RCN2), and we name it Raptin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!