Background: Cyclooxygenase-2 (COX-2), the key enzyme in the arachidonic acid conversion to prostaglandins, is one of the enzymes associated with different pathophysiological conditions, such as inflammation, cancers, Alzheimer's, and Parkinson's disease. Therefore, COX-2 inhibitors have emerged as potential therapeutic agents in these diseases.
Objective: The objective of this study was to design and synthesize novel imidazo[1,2-a]pyridine derivatives utilizing rational design methods with the specific aim of developing new potent COX-2 inhibitors. Additionally, we sought to investigate the biological activities of these compounds, focusing on their COX-2 inhibitory effects, analgesic activity, and antiplatelet potential. We aimed to contribute to the development of selective COX-2 inhibitors with enhanced therapeutic benefits.
Methods: Docking investigations were carried out using AutoDock Vina software to analyze the interaction of designed compounds. A total of 15 synthesized derivatives were obtained through a series of five reaction steps. The COX-2 inhibitory activities were assessed using the fluorescent Cayman kit, while analgesic effects were determined through writing tests, and Born's method was employed to evaluate antiplatelet activities.
Results: The findings indicated that the majority of the tested compounds exhibited significant and specific inhibitory effects on COX-2, with a selectivity index ranging from 51.3 to 897.1 and IC values of 0.13 to 0.05 μM. Among the studied compounds, derivatives 5e, 5f, and 5j demonstrated the highest potency with IC value of 0.05 μM, while compound 5i exhibited the highest selectivity with a selectivity index of 897.19. analgesic activity of the most potent COX-2 inhibitors revealed that 3-(4-chlorophenoxy)-2-[4-(methylsulfonyl) phenyl] imidazo[1,2-a]pyridine (5j) possessed the most notable analgesic activity with ED value of 12.38 mg/kg. Moreover, evaluating the antiplatelet activity showed compound 5a as the most potent for inhibiting arachidonic acidinduced platelet aggregation. In molecular modeling studies, methylsulfonyl pharmacophore was found to be inserted in the secondary pocket of the COX-2 active site, where it formed hydrogen bonds with Arg-513 and His-90.
Conclusion: The majority of the compounds examined demonstrated selectivity and potency as inhibitors of COX-2. Furthermore, the analgesic effects observed of potent compounds can be attributed to the inhibition of the cyclooxygenase enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0118715206269563231220104846 | DOI Listing |
J Comput Chem
January 2025
Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
Cyclooxygenase-2 (COX-2) is an enzyme that plays a crucial role in inflammation by converting arachidonic acid into prostaglandins. The overexpression of enzyme is associated with conditions such as cancer, arthritis, and Alzheimer's disease (AD), where it contributes to neuroinflammation. In silico virtual screening is pivotal in early-stage drug discovery; however, the absence of coding or machine learning expertise can impede the development of reliable computational models capable of accurately predicting inhibitor compounds based on their chemical structure.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
Advanced oxidation processes (AOPs), including ionizing radiation treatment, are increasingly recognized as an effective method for the degradation of pharmaceutical pollutants, including non-steroidal anti-inflammatory drugs (NSAIDs). Nabumetone (NAB), a widely used NSAID prodrug, poses an environmental risk due to its persistence in aquatic ecosystems and its potential toxicity to non-target organisms. In this study, the radiolytic degradation of NAB was investigated under different experimental conditions (dose rate, radical scavenging, pH, matrix effect), and the toxicity of its degradation products was evaluated.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Türkiye.
This study aimed to compare the inhibitory effect of flunixin meglumine and meloxicam on the smooth muscles of the gastrointestinal tract in male cattle. Tissue samples, including the abomasum, ileum, proximal loop and centripetal gyri of the ascending colon, were collected from routinely slaughtered male cattle. These samples were sectioned into strips and mounted in an isolated tissue bath system.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
Background: Nasopharyngeal cancer (NPC) is prevalent in Southeast Asia and North Africa, which is generally associated with limited treatment options and poor patient prognosis.
Objective: Ferroptosis is a recently observed cell death modality and has been shown to link to the efficacy of different anti-cancer treatments, thus offering opportunities to the development of novel therapies. This study aims to investigate the potentiating effects of COX-2 inhibitors on ferroptosis in nasopharyngeal cancer.
Biomolecules
December 2024
Department of Orthopaedic Surgery, Kanazawa Medical University, Daigaku 1-1, Uchinada-machi, Kahoku-gun 920-0293, Japan.
Inflammation and oxidative stress are crucial for osteoarthritis (OA) pathogenesis. Despite the potential of pharmacological pretreatment of chondrocytes in preventing OA, its efficacy in preventing the progression of cartilage damage and promoting its recovery has not been examined. In this study, an HO-induced human OA-like chondrocyte cell model was created using H1467 primary human chondrocytes to evaluate the efficacy of interleukin (IL)-6 and cyclooxygenase (COX)-2 inhibitors (tocilizumab and celecoxib, respectively) in the prevention and treatment of cartilage damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!