In malaria-endemic areas, pregnant women are more susceptible to infection, especially primigravidae. During pregnancy, parasites sequester in the placenta and bind to the receptor chondroitin sulfate (CSA). This unique adhesion is mediated by the parasite protein VAR2CSA expressed on the surface of infected erythrocytes (IE). Placental malaria is associated with poor pregnancy outcomes including perinatal mortality, preterm delivery, small for gestational age (SGA) and low birthweight deliveries. Over successive pregnancies, women acquire functional antibodies that inhibit IE adhesion to CSA. Here, we examine the development of anti-adhesion activity and the breadth of anti-adhesion activity as a function of number of previous pregnancies, using samples collected from pregnant women living in an area with high seasonal malaria transmission. Women reached plateau levels of anti-adhesion activity and breadth of anti-adhesion activity after 5 pregnancies. We related the level of anti-adhesion activity and reactivity with surface IE to SGA 19/232 pregnancies resulted in SGA, and report that an increase of 10% in median anti-adhesion activity reduced the odds of SGA by 13% and this relationship approached significance. Further, at an anti-adhesion activity level of 43.7%, an increase of 10% in the breadth of activity significantly reduced the odds of SGA by 21.5%. Antibodies that recognize IE surface increased over successive pregnancies, but were not associated with a reduction in SGA. These results can serve as a guideline for assessing vaccine candidates aiming to reduce poor pregnancy outcomes associated with placental malaria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10808177PMC
http://dx.doi.org/10.3389/fimmu.2023.1330962DOI Listing

Publication Analysis

Top Keywords

anti-adhesion activity
28
receptor chondroitin
8
chondroitin sulfate
8
pregnant women
8
placental malaria
8
poor pregnancy
8
pregnancy outcomes
8
successive pregnancies
8
activity
8
activity breadth
8

Similar Publications

Concurrent effects and dynamic wetting abilities of nanometals anchored redox-active Janus nanoarchitectures on cotton fabric for sustainable catalysis and disinfection.

Int J Biol Macromol

December 2024

Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China. Electronic address:

Article Synopsis
  • Designed a new type of catalyst using a unique Lous-leaf-inspired nanoarchitecture that prevents contamination and improves efficiency in disinfection processes.
  • Utilized hydrophilic polydopamine to help create a special coating on cotton fabric that interacts well with contaminants and boosts antibacterial action, all without needing extra chemicals.
  • Achieved over 99% antibacterial effectiveness against E. coli even after multiple washes, demonstrating strong resistance and the ability to tackle common challenges in catalytic reactions.
View Article and Find Full Text PDF

Advancing therapeutic frontiers: a pipeline of novel drugs for luminal and perianal Crohn's disease management.

Therap Adv Gastroenterol

December 2024

Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani, 2, Padua 35128, Italy.

Crohn's disease (CD) is a chronic, complex inflammatory disorder of the gastrointestinal tract that presents significant therapeutic challenges. Despite the availability of a wide range of treatments, many patients experience primary non-response, secondary loss of response, or adverse events, limiting the overall effectiveness of current therapies. Clinical trials often report response rates below 60%, partly due to stringent inclusion criteria.

View Article and Find Full Text PDF

Introduction: Biosurfactants are naturally occurring compounds with various ap-plications, biodegradable, non-toxic, and effective in different conditions. This study fo-cuses on the extraction and evaluation of biosurfactants produced by five strains of lactic acid bacteria [LAB] for their potential to inhibit biofilm formation and adhesion by Strep-tococcus mutans.

Methods: The strains of LAB-producing biosurfactants such as Lactobacillus salivarius, L.

View Article and Find Full Text PDF
Article Synopsis
  • * Anti-adhesive therapy aims to block bacteria from attaching to host cells, thereby preventing infections, and natural compounds from food sources show promise in this area.
  • * The review highlights several dietary components that have anti-adhesive properties against various harmful bacteria, suggesting potential for these agents as nutraceuticals or to enhance traditional antibiotic treatments.
View Article and Find Full Text PDF

Persistent anti-inflammatory responses are critical for the prevention of peritendinous adhesion. Although modified anti-adhesion barriers have been studied extensively, the immune response induced by the implants and the unclear mechanism limits their application. In this research, the advantage of the multi-functionalities of CA (caffeic acid) is taken to synthesize biodegradable poly (ester urethane) urea elastomers with ester- and carbamate-bonded CA (PEUU-CA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!