The new era of space exploration is increasing the astronaut's number and diversity in low orbit and beyond. The influx of such a diverse crew population will also increase the need for medical technologies to ensure safe and productive missions. Such a need represents a unique opportunity to innovate and develop diagnostics and treatment tools to meet future needs. Historically, terrestrial regulatory oversight of biomedical design processes was considered separate from spaceflight regulatory processes because it did not address spaceflight constraints. These constraints challenge the creative development of unique solutions for use in space. Translation between healthcare innovation in spaceflight to healthcare on Earth and vice versa requires understanding the commonalities, unique needs and constraints. This manuscript provides a framework for comparing Earth-space design processes and a perspective on the best practices to improve healthcare equity and health outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810308PMC
http://dx.doi.org/10.1109/OJEMB.2023.3270393DOI Listing

Publication Analysis

Top Keywords

design processes
8
processes
4
processes designing
4
designing innovative
4
innovative biomedical
4
biomedical hardware
4
hardware space
4
space earth
4
earth era
4
era space
4

Similar Publications

Rapidly Manufactured CAR-T with Conserved Cell Stemness and Distinctive Cytokine-Secreting Profile Shows Improved Anti-Tumor Efficacy.

Vaccines (Basel)

November 2024

Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China.

The emergence of chimeric antigen receptor T-cell (CAR-T) immunotherapy holds great promise in treating hematologic malignancies. While advancements in CAR design have enhanced therapeutic efficacy, the time-consuming manufacturing process has not been improved in the commercial production of CAR-T cells. In this study, we developed a "DASH CAR-T" process to manufacture CAR-T cells in 72 h and found the excelling anti-tumor efficacy of DASH CAR-T cells over conventionally manufactured CAR-T cells.

View Article and Find Full Text PDF

CloudSim is a versatile simulation framework for modeling cloud infrastructure components that supports customizable and extensible application provisioning strategies, allowing for the simulation of cloud services. On the other hand, Distributed Acoustic Sensing (DAS) is a ubiquitous technique used for measuring vibrations over an extended region. Data handling in DAS remains an open issue, as many applications need continuous monitoring of a volume of samples whose storage and processing in real time require high-capacity memory and computing resources.

View Article and Find Full Text PDF

Dynamic Boundary Estimation of Suspended Sediment Plume Benefit by the Autonomous Underwater Vehicle Sensing.

Sensors (Basel)

December 2024

Key Laboratory of System Control and Information Processing, Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China.

The suspended sediment plume generated in the deep-sea mining process significantly impacts the marine environment and seabed ecosystem. Accurate boundary estimation can effectively monitor the scope of environmental impact, guiding mining operations to prevent ecological damage. In this paper, we propose a dynamic boundary estimation approach for the suspended sediment plume, leveraging the sensing capability of the Autonomous Underwater Vehicles (AUVs).

View Article and Find Full Text PDF

Cutaneous leishmaniasis is a parasitic disease that poses significant diagnostic challenges due to the variability of results and reliance on operator expertise. This study addresses the development of a system based on machine learning algorithms to detect spp. parasite in direct smear microscopy images, contributing to the diagnosis of cutaneous leishmaniasis.

View Article and Find Full Text PDF

Lightweight Siamese Network with Global Correlation for Single-Object Tracking.

Sensors (Basel)

December 2024

Department of Automation, Xiamen University, Xiamen 361102, China.

Recent advancements in the field of object tracking have been notably influenced by Siamese-based trackers, which have demonstrated considerable progress in their performance and application. Researchers frequently emphasize the precision of trackers, yet they tend to neglect the associated complexity. This oversight can restrict real-time performance, rendering these trackers inadequate for specific applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!