Background: Whole-genome sequencing (WGS) has contributed significantly to advancements in machine learning methods for predicting antimicrobial resistance (AMR). However, the comparisons of different methods for AMR prediction without requiring prior knowledge of resistance remains to be conducted.
Methods: We aimed to predict the minimum inhibitory concentrations (MICs) of 13 antimicrobial agents against using three machine learning algorithms (random forest, support vector machine, and XGBoost) combined with k-mer features extracted from WGS data.
Results: A cohort of 339 isolates was used for model construction. The average essential agreement and category agreement of the best models exceeded 90.90% (95%CI, 89.03-92.77%) and 95.29% (95%CI, 94.91-95.67%), respectively; the exceptions being levofloxacin, minocycline and imipenem. The very major error rates ranged from 0.0 to 5.71%. We applied feature selection pipelines to extract the top-ranked 11-mers to optimise training time and computing resources. This approach slightly improved the prediction performance and enabled us to obtain prediction results within 10 min. Notably, when employing these top-ranked 11-mers in an independent test dataset (120 isolates), we achieved an average accuracy of 0.96.
Conclusion: Our study is the first to demonstrate that AMR prediction for using machine learning methods based on k-mer features has competitive performance over traditional workflows; hence, sequence-based AMR prediction and its application could be further promoted. The k-mer-based workflow developed in this study demonstrated high recall/sensitivity and specificity, making it a dependable tool for MIC prediction in clinical settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10808480 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1320312 | DOI Listing |
Curr Med Imaging
January 2025
Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
Objective: The aim of this study was to develop and validate predictive models for perineural invasion (PNI) in gastric cancer (GC) using clinical factors and radiomics features derived from contrast-enhanced computed tomography (CE-CT) scans and to compare the performance of these models.
Methods: This study included 205 GC patients, who were randomly divided into a training set (n=143) and a validation set (n=62) in a 7:3 ratio. Optimal radiomics features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm.
Ann Surg
January 2025
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
Objective: To assess performance of an algorithm for automated grading of surgery-related adverse events (AEs) according to Clavien-Dindo (C-D) classification.
Summary Background Data: Surgery-related AEs are common, lead to increased morbidity for patients, and raise healthcare costs. Resource-intensive manual chart review is still standard and to our knowledge algorithms using electronic health record (EHR) data to grade AEs according to C-D classification have not been explored.
Cancer Med
January 2025
Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.
Background: Distinctive heterogeneity characterizes diffuse large B-cell lymphoma (DLBCL), one of the most frequent types of non-Hodgkin's lymphoma. Mitochondria have been demonstrated to be closely involved in tumorigenesis and progression, particularly in DLBCL.
Objective: The purposes of this study were to identify the prognostic mitochondria-related genes (MRGs) in DLBCL, and to develop a risk model based on MRGs and machine learning algorithms.
Introduction: This study aimed to identify cognitive tests that optimally relate to tau positron emission tomography (PET) signal in the inferior temporal cortex (ITC), a neocortical region associated with early tau accumulation in Alzheimer's disease (AD).
Methods: We analyzed cross-sectional data from the harvard aging brain study (HABS) (= 128) and the Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) study (= 393). We used elastic net regression to identify the most robust cognitive correlates of tau PET signal in the ITC.
Beilstein J Org Chem
January 2025
Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore.
The discovery of the optimal conditions for chemical reactions is a labor-intensive, time-consuming task that requires exploring a high-dimensional parametric space. Historically, the optimization of chemical reactions has been performed by manual experimentation guided by human intuition and through the design of experiments where reaction variables are modified one at a time to find the optimal conditions for a specific reaction outcome. Recently, a paradigm change in chemical reaction optimization has been enabled by advances in lab automation and the introduction of machine learning algorithms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!