A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Utilizing productivity and health breeding-to-market information along with disease diagnostic data to identify pig mortality risk factors in a U.S. swine production system. | LitMetric

Aggregated diagnostic data collected over time from swine production systems is an important data source to investigate swine productivity and health, especially when combined with records concerning the pre-weaning and post-weaning phases of production. The combination of multiple data streams collected over the lifetime of the pigs is the essence of the whole-herd epidemiological investigation. This approach is particularly valuable for investigating the multifaceted and ever-changing factors contributing to wean-to-finish (W2F) swine mortality. The objective of this study was to use a retrospective dataset ("master table") containing information on 1,742 groups of pigs marketed over time to identify the major risk factors associated with W2F mortality. The master table was built by combining historical breed-to-market performance and health data with disease diagnostic records (Dx Codes) from marketed groups of growing pigs. After building the master table, univariate analyses were conducted to screen for risk factors to be included in the initial multivariable model. After a stepwise backward model selection approach, 5 variables and 2 interactions remained in the final model. Notably, the diagnosis variable significantly associated with W2F mortality was porcine reproductive and respiratory syndrome virus (PRRSV). Closeouts with clinical signs suggestive of spp. or infection were also associated with higher W2F mortality. Source sow farm factors that remained significantly associated with W2F mortality were the sow farm PRRS status, average weaning age, and the average pre-weaning mortality. After testing for the possible interactions in the final model, two interactions were significantly associated with wean-to-finish pig mortality: (1) sow farm PRRS status and a laboratory diagnosis of PRRSV and (2) average weaning age and a laboratory diagnosis of PRRS. Closeouts originating from PRRS epidemic or PRRS negative sow farms, when diagnosed with PRRS in the growing phase, had the highest W2F mortality rates. Likewise, PRRS diagnosis in the growing phase was an important factor in mortality, regardless of the average weaning age of the closeouts. Overall, this study demonstrated the utility of a whole-herd approach when analyzing diagnostic information along with breeding-to-market productivity and health information, to measure the major risk factors associated with W2F mortality in specified time frames and pig populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10808511PMC
http://dx.doi.org/10.3389/fvets.2023.1301392DOI Listing

Publication Analysis

Top Keywords

w2f mortality
24
risk factors
16
associated w2f
16
productivity health
12
sow farm
12
average weaning
12
weaning age
12
mortality
11
disease diagnostic
8
diagnostic data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!