Mitosis is a crucial biological process where a parental cell undergoes precisely controlled functional phases and divides into two daughter cells. Some drugs can inhibit cell mitosis, for instance, the anti-cancer drugs interacting with the tumor cell proliferation and leading to mitosis arrest at a specific phase or cell death eventually. Combining machine learning with microfluidic impedance flow cytometry (IFC) offers a concise way for label-free and high-throughput classification of drug-treated cells at single-cell level. IFC-based single-cell analysis generates a large amount of data related to the cell electrophysiology parameters, and machine learning helps establish correlations between these data and specific cell states. This work demonstrates the application of machine learning for cell state classification, including the binary differentiations between the G1/S and apoptosis states and between the G2/M and apoptosis states, as well as the classification of three subpopulations comprising a subgroup insensitive to the drug beyond the two drug-induced states of G2/M arrest and apoptosis. The impedance amplitudes and phases used as input features for the model training were extracted from the IFC-measured datasets for the drug-treated tumor cells. The deep neural network (DNN) model was exploited here with the structure (e.g., hidden layer number and neuron number in each layer) optimized for each given cell type and drug. For the H1650 cells, we obtained an accuracy of 78.51% for classification between the G1/S and apoptosis states and 82.55% for the G2/M and apoptosis states. For HeLa cells, we achieved a high accuracy of 96.94% for classification between the G2/M and apoptosis states, both of which were induced by taxol treatment. Even higher accuracy approaching 100% was achieved for the vinblastine-treated HeLa cells for the differentiation between the viable and non-viable states, and between the G2/M and apoptosis states. We also demonstrate the capability of the DNN model for high-accuracy classification of the three subpopulations in a complete cell sample treated by taxol or vinblastine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807927 | PMC |
http://dx.doi.org/10.1063/5.0181287 | DOI Listing |
Theranostics
January 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People's Republic of China.
Hepatic carcinoma, one of the most malignant cancers in the world, has limited success with immunotherapy and a poor prognosis in patients. While pyroptosis is considered as a promising immunotherapy strategy for tumors, it still suffers from a lack of effective inducers. We designed, synthesized and screened an indole analogue, , featuring a 2, 4-thiazolidinedione substituted indole scaffold.
View Article and Find Full Text PDFTheranostics
January 2025
State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
Lower vertebrates and some neonatal mammals are known to possess the ability to regenerate cardiomyocyte and fully recover after heart injuries within a limited period. Understanding the molecular mechanisms of heart regeneration and exploring new ways to enhance cardiac regeneration hold significant promise for therapeutic intervention of heart failure. Sphingosine 1-phospahte receptor 1 (S1PR1) is highly expressed in cardiomyocytes and plays a crucial role in heart development and pathological cardiac remodeling.
View Article and Find Full Text PDFTransl Androl Urol
December 2024
Department of Urology, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, China.
Background: Speckle-type POZ protein (SPOP), FAS-associated protein with death domain (FADD), and nuclear transcription factor-κB (NF-κB) have been shown to be associated with the development of prostate cancer (PCa). FADD has been shown to activate the NF-κB pathway to promote tumorigenesis, while SPOP has been shown to enhance the breakdown of FADD and inhibit the function of the NF-κB signaling pathway in non-small cell lung cancer. The existence of this mechanism has not yet been confirmed in PCa.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Orthopedics, Zhuhai Medical College (Zhuhai People's Hospital), State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Chemistry and Materials Science, Jinan University, Zhuhai, 519000, China.
Spinal cord injury (SCI) is a critical condition affecting the central nervous system that often has permanent and debilitating consequences, including secondary injuries. Oxidative damage and inflammation are critical factors in secondary pathological processes. Selenium nanoparticles have demonstrated significant antioxidative and anti-inflammatory properties via a non-immunosuppressive pathway; however, their clinical application has been limited by their inadequate stability and functionality to cross the blood-spinal cord barrier (BSCB).
View Article and Find Full Text PDFJ Adv Res
January 2025
School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China. Electronic address:
Introduction: In the environment, mycotoxins and fungicides frequently coexist, potentially causing synergistic risks to organisms. Epoxiconazole (EPO) and aflatoxin B1 (AFB1) are a common fungicide and mycotoxins, respectively, which are widely present in the environment and have toxic effects on multiple organs once entering the organism, but it is still unclear whether the co-exposure has a synergistic toxic effect.
Objectives: This study delves into the molecular mechanisms underlying the co-exposure to EPO and AFB1, emphasizing multi-organ toxicity in female zebrafish (F0 generation) and potential transgenerational impacts on the offspring embryos (F1 generation) through multi-omics approaches.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!