Cyclodextrin (CD)-based polyrotaxanes (PRXs) are supramolecular polymers comprising multiple CDs mechanically interlocked onto a linear polymer chain by capping the polymer ends with bulky stoppers. Among various PRX derivatives, propionylated PRXs (Pr-PRXs) composed of propionylated α-CD and high molecular-weight poly(ethylene glycol) (PEG) form self-assembled nanoparticles in aqueous solution through hydrophobic interactions. Although Pr-PRX nanoparticles can encapsulate hydrophobic drugs in their hydrophobic domains, their release rate is limited. To improve the efficiency of drug release from Pr-PRX nanoparticles, ultraviolet (UV) light-dissociable Pr-PRXs were designed using 4,5-dimethoxy 2-nitrobenzyl groups as UV-cleavable bulky stopper molecules to facilitate UV-induced drug release. Photodegradable Pr-PRX (Pr-PD-PRX) was synthesized, and its UV-induced dissociation was examined. Pr-PD-PRX was completely dissociated UV irradiation (365 nm) for 30 min. Additionally, Pr-PD-PRX nanoparticles encapsulating hydrophobic drugs collapsed upon UV irradiation, which promoted the release of the encapsulated drugs compared to non-degradable Pr-PRX nanoparticles. UV irradiation of drug-loaded Pr-PD-PRX nanoparticles resulted in higher cytotoxicity than non-irradiated Pr-PD-PRX and non-degradable Pr-PRX. Consequently, designing photodegradable PRX-based nanoparticles provides new insights into developing photoresponsive drug carriers and smart biomedical materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809058 | PMC |
http://dx.doi.org/10.1039/d4ra00213j | DOI Listing |
Small
January 2025
Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, P. R. China.
Topical transdermal drug delivery for psoriasis remains a challenge because of the poor solubility of hydrophobic drugs and the limited penetration of the stratum corneum. In this study, a near-infrared (NIR) light-responsive thermosensitive hydrogel (PDLLA-PEG-PDLLA, PLEL)-based drug reservoir is developed that directly incorporated gold nanorods (GNRs) and methotrexate (MTX) in the sol state at low temperature, which is referred to as PLEL@GNR+MTX. The in vitro anti-psoriasis experiment indicated that, GNRs, as photothermal cores of composite hydrogel, not only triggered keratinocyte apoptosis but also promoted MTX release in a synergistic manner.
View Article and Find Full Text PDFSmall
January 2025
Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
Dental caries, driven by dysbiosis in oral flora and acid accumulation, pose a significant threat to oral health. Traditional methods of managing dental biofilms using broad-spectrum antimicrobials and fluoride face limitations such as microbial resistance. Natural products, with their antimicrobial properties, present a promising solution for managing dental caries, yet their clinical application faces significant challenges, including low bioavailability, variable efficacy, and patient resistance due to sensory properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
It is crucial to inhibit the neuroinflammation response as it is a prominent factor contributing to the pathogenesis of neurodegenerative disorders. However, the limited development of neuroinflammation models dramatically hinders the efficiency of nanomedicine discovery. In recent years, the optically transparent zebrafish model provided unique advantages for imaging of the whole body, allowing the progression of the disease to be visualized.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland.
This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!