Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Visualization and visual analytic tools amplify one's perception of data, facilitating deeper and faster insights that can improve decision making. For multidimensional data sets, one of the most common approaches of visualization methods is to map the data into lower dimensions. Scatterplot matrices (SPLOM) are often used to visualize bivariate relationships between combinations of variables in a multidimensional dataset. However, the number of scatterplots increases quadratically with respect to the number of variables. For high dimensional data, the corresponding enormous number of scatterplots makes data exploration overwhelmingly complex, thereby hindering the usefulness of SPLOM in human decision making processes. One approach to address this difficulty utilizes Graph-theoretic Scatterplot Diagnostic (Scagnostics) to automatically extract a subset of scatterplots with salient features and of manageable size with the hope that the data will be sufficient for improving human decisions. In this paper, we use Electroencephalogram (EEG) to observe brain activity while participants make decisions informed by scatterplots created using different visual measures. We focused on 4 categories of Scagnostics measures: Clumpy, Monotonic, Striated, and Stringy. Our findings demonstrate that by adjusting the level of difficulty in discriminating between data sets based on the Scagnostics measures, different parts of the brain are activated: easier visual discrimination choices involve brain activity mostly in visual sensory cortices located in the occipital lobe, while more difficult discrimination choices tend to recruit more parietal and frontal regions as they are known to be involved in resolving ambiguities. Our results imply that patterns of neural activity are predictive markers of which specific Scagnostics measures most assist human decision making based on visual stimuli such as ours.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10805893 | PMC |
http://dx.doi.org/10.1007/s41666-023-00145-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!