Transient receptor potential (TRP) channels are a large and diverse family of transmembrane ion channels that are widely expressed, have important physiological roles, and are associated with many human diseases. These proteins are actively pursued as promising drug targets, benefitting greatly from advances in structural and mechanistic studies of TRP channels. At the same time, the complex, polymodal activation and regulation of TRP channels have presented formidable challenges. In this short review, we summarize recent progresses toward understanding the structural basis of TRP channel function, as well as potential ligand binding sites that could be targeted for therapeutics. A particular focus is on the current understanding of the molecular mechanisms of TRP channel activation and regulation, where many fundamental questions remain unanswered. We believe that a deeper understanding of the functional mechanisms of TRP channels will be critical and likely transformative toward developing successful therapeutic strategies targeting these exciting proteins. This endeavor will require concerted efforts from computation, structural biology, medicinal chemistry, electrophysiology, pharmacology, drug safety and clinical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10808746PMC
http://dx.doi.org/10.3389/fnmol.2023.1334370DOI Listing

Publication Analysis

Top Keywords

trp channels
20
ligand binding
8
molecular mechanisms
8
activation regulation
8
trp channel
8
mechanisms trp
8
channels
6
trp
6
targeting trp
4
channels advances
4

Similar Publications

Calcium channels as therapeutic targets in head and neck squamous cell carcinoma: current evidence and clinical trials.

Front Oncol

December 2024

Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, China.

Head and neck squamous cell carcinoma (HNSCC) originates from the mucosal epithelium of the oral cavity, pharynx, and larynx, and is marked by high rates of recurrence and metastasis. Calcium signaling is associated with the progression of HNSCC and the development of drug resistance. Changes in calcium ion flow can trigger severe pathophysiological processes, including malignant transformation, tumor proliferation, epithelial-mesenchymal transition, and apoptosis evasion.

View Article and Find Full Text PDF

Advances in the Study for Modulators of Transient Receptor Potential Vanilloid (TRPV) Channel Family.

Curr Top Med Chem

January 2025

School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, PR China.

Transient receptor potential vanilloid (TRPV) channels are a member of the TRP superfamily, which consists of six proteins and is expressed in many neuronal and non-neuronal cells. Among them, TRPV1-4 are non-selective cation channels that are highly sensitive to temperature changes, while TRPV5-6 are channels that are highly selective to Ca2+. These cation channels have attracted great interest academically, especially from a pharmacological perspective.

View Article and Find Full Text PDF

Efficacy and safety of transient receptor potential channel modulators for dry eye: A systematic review and meta-analysis.

Cont Lens Anterior Eye

January 2025

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Department of Integrative Medicine, Baoshan Campus of Huashan Hospital, Fudan University, Shanghai, China. Electronic address:

Purpose: To investigate the efficacy and safety of transient receptor potential (TRP) channel modulators for dry eye.

Methods: A thorough search for randomized clinical trials was conducted in seven databases up to February 16, 2024. Suitable studies were identified according to inclusion and exclusion criteria, extracted data were synthesized and analyzed using Review Manager 5.

View Article and Find Full Text PDF

Optimization and Calibration of 384-well Kinetic Ca Mobilization Assays for the Human Transient Receptor Potential Cation Channels TRPM8, TRPV1, and TRPA1.

SLAS Discov

December 2024

Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15232, USA. Electronic address:

Development, optimization, and calibration of human transient receptor potential (TRP) channel Ca mobilization assays for TRPM8, TRPV1, and TRPA1 are described. Heterologous expression of hTRPM8 in HEK293T cells was required for anti-TRPM8 antibody staining and TRPM8 agonist induced Ca mobilization signals which were both used to optimize transfection efficiency. FLIPR Calcium 6 dye concentration, loading time, and TRPM8 transfected cell seeding density were optimized and a DMSO tolerance of ≤0.

View Article and Find Full Text PDF

Chemotherapy is essential for treating tumors, including head and neck cancer (HNC). However, the toxic side effects of chemotherapeutic drugs limit their widespread use. Therefore, a targeted delivery system that can transport the drug to the pathological site while minimizing damage to healthy tissues is urgently needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!