'When is a hotspot a good nanospot' - review of analytical and hotspot-dominated surface enhanced Raman spectroscopy nanoplatforms.

Nanoscale

School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, B15 2TT, UK.

Published: February 2024

Substrate development in surface-enhanced Raman spectroscopy (SERS) continues to attract research interest. In order to determine performance metrics, researchers in foundational SERS studies use a variety of experimental means to characterize the nature of substrates. However, often this process would appear to be performed indiscriminately without consideration for the physical scale of the enhancement phenomena. Herein, we differentiate between SERS substrates whose primary enhancing structures are on the hundreds of nanometer scale (analytical SERS nanosubstrates) and those whose main mechanism derives from nanometric-sized gaps (hot-spot dominated SERS substrates), assessing the utility of various characterization methods for each substrate class. In this context, characterization approaches in white-light spectroscopy, electron beam methods, and scanning probe spectroscopies are reviewed. Tip-enhanced Raman spectroscopy, wavelength-scanned SERS studies, and the impact of surface hydrophobicity are also discussed. Conclusions are thus drawn on the applicability of each characterization technique regarding amenability for SERS experiments that have features at different length scales. For instance, while white light spectroscopy can provide an indication of the plasmon resonances associated with 10 s-100 s nm-scale structures, it may not reveal information about finer surface texturing on the true nm-scale, critical for SERS' sensitivity, and in need of investigation scanning probe techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868661PMC
http://dx.doi.org/10.1039/d3nr05332fDOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
12
sers studies
8
sers substrates
8
scanning probe
8
sers
7
spectroscopy
5
'when hotspot
4
hotspot good
4
good nanospot'
4
nanospot' review
4

Similar Publications

In this contribution, we apply our newly developed ball-milling platform, which combines Raman spectroscopy and thermal (IR) imaging, as well as acoustic and high-speed optical video recordings, to the synthesis and transformation of citric acid-isonicotinamide (1:2) cocrystal polymorphs in transparent PMMA jars. Particularly, we demonstrate how Raman, temperature, acoustic, and video data are complementary and enable detection and connection of chemical and physical events happening during ball-milling in a time-resolved manner. Importantly, we show that the formation of the three cocrystal polymorphs can be detected through acoustic analyses solely.

View Article and Find Full Text PDF

Formulation of catechin hydrate nanoemulsion for fortification of yogurt.

J Food Sci Technol

February 2025

Department of Food Process Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203 India.

Unlabelled: Catechin hydrate (CH) is a kind of polyphenol present in many plantsincluding green tea, fruits, red wine and cocoa with very good antioxidant effect. The formulation of CH nanoemulsion increased the bioavailability and stability of catechin, allowing for easier food incorporation and faster absorption by the body. The major goal of the current study was to create a nanoemulsion as a reliable delivery mechanism for catechin hydrate and its incorporation into yogurt to increase its antioxidant activity.

View Article and Find Full Text PDF

Blood carries some of the most valuable biomarkers for disease screening as it interacts with various tissues and organs in the body. Human blood serum is a reservoir of high molecular weight fraction (HMWF) and low molecular weight fraction (LMWF) proteins. The LMWF proteins are considered disease marker proteins and are often suppressed by HMWF proteins during analysis.

View Article and Find Full Text PDF

This research prepared gelatinized waxy maize starch (WMS), low-amylose maize starch (LAS), and high-amylose maize starch (HAS) with different glutathione (GSH) content (5, 10, and 15 %) using high hydrostatic pressure (HHP) at 600 MPa. Scanning electron microscopy (SEM) revealed damaged morphology of WMS and complete swelled granules of LAS and HAS with different degree of gelatinization (DG) values, 92.86, 59.

View Article and Find Full Text PDF

Significance: Maximal safe resection of brain tumors can be performed by neurosurgeons through the use of accurate and practical guidance tools that provide real-time information during surgery. Current established adjuvant intraoperative technologies include neuronavigation guidance, intraoperative imaging (MRI and ultrasound), and 5-ALA for fluorescence-guided surgery.

Aim: We have developed intraoperative Raman spectroscopy as a real-time decision support system for neurosurgical guidance in brain tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!