Fire is a dominant force shaping patterns of plant diversity in Mediterranean-type ecosystems. In these biodiversity hotspots, including California's endangered coastal scrub, many species remain hidden belowground as seeds and bulbs, only to emerge and flower when sufficient rainfall occurs after wildfire. The unique adaptations possessed by these species enable survival during prolonged periods of unfavorable conditions, but their continued persistence could be threatened by nonnative plant invasion and environmental change. Furthermore, their fleeting presence aboveground makes evaluating these threats in situ a challenge. For example, nitrogen (N) deposition resulting from air pollution is a well-recognized threat to plant diversity worldwide but impacts on fire-following species are not well understood. We experimentally evaluated the impact of N deposition on post-fire vegetation cover and richness for three years in stands of coastal sage scrub that had recently burned in a large wildfire in southern California. We installed plots receiving four levels of N addition that corresponded to the range of N deposition rates in the region. We assessed the impact of pre-fire invasion status on vegetation dynamics by including plots in areas that had previously been invaded by nonnative grasses, as well as adjacent uninvaded areas. We found that N addition reduced native forb cover in the second year post-fire while increasing the abundance of nonnative forbs. As is typical in fire-prone ecosystems, species richness declined over the three years of the study. However, N addition hastened this process, and native forb richness was severely reduced under high N availability, especially in previously invaded shrublands. An indicator species analysis also revealed that six functionally and taxonomically diverse forb species were especially sensitive to N addition. Our results highlight a new potential mechanism for the depletion of native species through the suppression of ephemeral post-fire bloom events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.17117 | DOI Listing |
Integr Environ Assess Manag
January 2025
Industrieverband Agrar e. V. (IVA), Wissenschaft und Innovation, Frankfurt am Main, Germany.
Current publications that are shaping public perception repeatedly claim that residues of plant protection products (PPP) in the environment demonstrate gaps in assessing the exposure and effects of PPP, allegedly revealing the inability of the European regulatory system to prevent environmental contamination and damage such as biodiversity decline. The hypothesis is that environmental risk assessments rely on inappropriate predictive models that underestimate exposure and do not explicitly account for the impact of combinations of environmental stressors and physiological differences in stress responses. This article puts this criticism into context to allow for a more balanced evaluation of the European regulatory system for PPP.
View Article and Find Full Text PDFNat Prod Res
January 2025
Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil.
(L.) R. Br.
View Article and Find Full Text PDFData Brief
February 2025
Department of Biology, Allama Iqbal Open University, Islamabad, Pakistan.
Plants are colonized by a vast array of microorganisms that outstrip plant cell densities and genes, thus referred to as plant's second genome or extended genome. The microbial communities exert a significant influence on the vigor, growth, development and productivity of plants by supporting nutrient acquisition, organic matter decomposition and tolerance against biotic and abiotic stresses such as heat, high salt, drought and disease, by regulating plant defense responses. The rhizosphere is a complex micro-ecological zone in the direct vicinity of plant roots and is considered a hotspot of microbial diversity.
View Article and Find Full Text PDFHeliyon
January 2025
Departamento de Engenharia Florestal, Universidade Eduardo Mondlane, Av. Julius Nyerere Número 3453, Campus Universitário Principal, Edifício Número 1, 257, Maputo, Mozambique.
Mozambican miombo woodlands (MWs) have been experiencing severe anthropogenic threats, recognized to have an impact on plant species distribution, occurrence, diversity, and rarity patterns. Based on 3725 0.1 ha plots distributed across the country's MWs, this study aimed to assess the species rarity and commonness, protection status, and availability of commercial timber in MWs under varied environmental conditions.
View Article and Find Full Text PDFHeliyon
January 2025
Laboratory of Plant Protection, National Institute of Agronomic Research of Tunisia, University of Carthage, Rue Hedi Karray, 2049, El-Menzah, Tunisia.
subsp. (L.) Arcang.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!