The worldwide retreat of glaciers is causing a faster than ever increase in ice-free areas that are leading to the emergence of new ecosystems. Understanding the dynamics of these environments is critical to predicting the consequences of climate change on mountains and at high latitudes. Climatic differences between regions of the world could modulate the emergence of biodiversity and functionality after glacier retreat, yet global tests of this hypothesis are lacking. Nematodes are the most abundant soil animals, with keystone roles in ecosystem functioning, but the lack of global-scale studies limits our understanding of how the taxonomic and functional diversity of nematodes changes during the colonization of proglacial landscapes. We used environmental DNA metabarcoding to characterize nematode communities of 48 glacier forelands from five continents. We assessed how different facets of biodiversity change with the age of deglaciated terrains and tested the hypothesis that colonization patterns are different across forelands with different climatic conditions. Nematodes colonized ice-free areas almost immediately. Both taxonomic and functional richness quickly increased over time, but the increase in nematode diversity was modulated by climate, so that colonization started earlier in forelands with mild summer temperatures. Colder forelands initially hosted poor communities, but the colonization rate then accelerated, eventually leveling biodiversity differences between climatic regimes in the long term. Immediately after glacier retreat, communities were dominated by colonizer taxa with short generation time and r-ecological strategy but community composition shifted through time, with increased frequency of more persister taxa with K-ecological strategy. These changes mostly occurred through the addition of new traits instead of their replacement during succession. The effects of local climate on nematode colonization led to heterogeneous but predictable patterns around the world that likely affect soil communities and overall ecosystem development.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.17057DOI Listing

Publication Analysis

Top Keywords

glacier retreat
12
local climate
8
nematode communities
8
communities glacier
8
ice-free areas
8
taxonomic functional
8
communities
5
colonization
5
climate modulates
4
modulates development
4

Similar Publications

Iceberg calving is a major contributor to Greenland's ice mass loss. Ice mélange, tightly packed sea ice and icebergs, has been hypothesized to buttress the calving fronts. However, quantifying the mélange buttressing force from field observations remains a challenge.

View Article and Find Full Text PDF

Bathymetry critically influences the intrusion of warm Circumpolar Deep Water onto the continental shelf and under ice shelf cavities in Antarctica, thereby forcing ice melting, grounding line retreat, and sea level rise. We present a novel and comprehensive bathymetry of Antarctica that includes all ice shelf cavities and previously unmeasured continental shelf areas. The new bathymetry is based on a 3D inversion of a circumpolar compilation of gravity anomalies constrained by measurements from the International Bathymetric Chart of the Southern Ocean, BedMachine Antarctica, and discrete seafloor measurements from seismic and ocean robotic probes.

View Article and Find Full Text PDF
Article Synopsis
  • The discharge of calved ice and subglacial runoff in Disko Bay, home to Sermeq Kujalleq glacier, is expected to influence marine biogeochemistry, particularly affecting the marine silica cycle due to elevated dissolved silica (dSi) from glaciers.
  • The study analyzes silica dynamics in various regions around Disko Bay, finding that land-terminating glaciers show conservative dSi patterns, whereas marine-terminating glaciers significantly alter nutrient distribution through subglacial discharge plumes.
  • The research quantifies contributions to dSi enrichment, highlighting that a large fraction comes from saline water entrainment, with minor contributions from icebergs and amorphous silica dissolution, ultimately adding a small but significant dSi flux to the environment.
View Article and Find Full Text PDF

The West Antarctic Peninsula (WAP) is a hotspot of climate warming, evidencing glacier retreat and a decrease in the fast-ice duration. This study provides a > 30-y time-series (1987-2022) on annual and seasonal air temperatures in Potter Cove (Isla 25 de Mayo/King George Island). It investigates the interaction between warming, glacial melt, fast-ice and the underwater conditions (light, salinity, temperature, turbidity) over a period of 10 years along the fjord axis (2010-2019), and for the first time provides a unique continuous underwater irradiance time series over 5 years (2014-2018).

View Article and Find Full Text PDF

The 'Third Pole', home to numerous glaciers, serves as vital water reserves for a significant portion of the Asian population and has garnered global attention within the context of climate change due to their highly vulnerable nature. While a general decline in global glacial extent has been observed in recent decades, the pronounced regional imbalances across the Third Pole present a perplexing anomaly. To assess the impact of glacier mass changes in the Gangotri basin, we conducted a comprehensive analysis using remote sensing data to estimate spatially resolved mass changes from 2000 to 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!