AI Article Synopsis

  • New research indicates that lianas (woody vines) are competing with trees in disturbed forests, threatening the recovery processes and the global carbon sink.
  • The study analyzed data from 651 vegetation samples globally and found that lianas thrive better than trees in disturbed areas with warmer temperatures, lower rainfall, and tropical lowland conditions.
  • High liana competition can hinder forest recovery for decades under specific climatic conditions, highlighting the need for targeted restoration strategies in tropical forests to mitigate potential impacts on carbon storage.

Article Abstract

Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana-tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana-to-tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana-favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.17140DOI Listing

Publication Analysis

Top Keywords

lianas trees
12
forest disturbance
12
disturbance climate
12
trees driven
8
global carbon
8
carbon sink
8
competitive success
8
success lianas
8
lianas
7
trees
6

Similar Publications

Exploring Co-Occurrence Patterns to Understand Epiphyte-Liana Interactions.

Plants (Basel)

January 2025

Instituto de Ecología Regional (IER), Universidad Nacional de Tucumán (UNT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Yerba Buena 4107, Tucumán, Argentina.

Although epiphytes and lianas share the same habitat, most research has treated these two groups independently. This study aimed to evaluate the co-occurrence of vascular epiphytes and lianas in the subtropical montane forests of northwestern Argentina. We recorded epiphyte cover and liana basal area on trees ≥ 10-cm-dbh in 120 20 × 20 m plots in the Sierra de San Javier (Tucumán, Argentina).

View Article and Find Full Text PDF

Unlabelled: Some plant lineages remain within the same biome over time (biome conservatism), whereas others seem to adapt more easily to new biomes. The c. 398 species (14 genera) of subfamily Cercidoideae (Leguminosae or Fabaceae) are found in many biomes around the world, particularly in the tropical regions of South America, Asia and Africa, and display a variety of growth forms (small trees, shrubs, lianas and herbaceous perennials).

View Article and Find Full Text PDF

Plants display a range of temporal patterns of inter-annual reproduction, from relatively constant seed production to "mast seeding," the synchronized and highly variable interannual seed production of plants within a population. Previous efforts have compiled global records of seed production in long-lived plants to gain insight into seed production, forest and animal population dynamics, and the effects of global change on masting. Existing datasets focus on seed production dynamics at the population scale but are limited in their ability to examine community-level mast seeding dynamics across different plant species at the continental scale.

View Article and Find Full Text PDF

Lianas (woody climbers) are crucial components of tropical forests and they have been increasingly recognized to have profound effects on tropical forest carbon dynamics. Despite their importance, lianas' representation in vegetation models remains limited, partly due to the complexity of liana-tree dynamics and the diversity in liana life history strategies. This paper provides a comprehensive review of advances and challenges for mechanistically representing lianas in forest ecosystem models and a proposed path towards effectively representing lianas in these models.

View Article and Find Full Text PDF

Disentangling the response of species diversity, forest structure, and environmental drivers to aboveground biomass in the tropical forests of Western Ghats, India.

Sci Total Environ

December 2024

Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, Puducherry 605014, India; Natural Resource Division, Faculty of Forestry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Benhama Ganderbal, Jammu and Kashmir, 191201, India.

Tropical forests are crucial to the global carbon cycle, but a significant knowledge gap in the precise distribution patterns of forest aboveground biomass (AGB) hinders our ability to formulate effective conservation efforts. A key unresolved issue is the lack of understanding of how forest AGB interacts with biotic and abiotic factors on large spatial scale. To address this, we used Structural Equation Modeling to disentangle the direct and indirect effects of environmental, anthropogenic, structural diversity species diversity and edaphic factors on AGB of trees, lianas and regenerating communities using the data from 96 1-ha plots in the central Western Ghats biodiversity hotspot, India.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!