Association of the pathomics-collagen signature with lymph node metastasis in colorectal cancer: a retrospective multicenter study.

J Transl Med

Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.

Published: January 2024

Background: Lymph node metastasis (LNM) is a prognostic biomarker and affects therapeutic selection in colorectal cancer (CRC). Current evaluation methods are not adequate for estimating LNM in CRC. H&E images contain much pathological information, and collagen also affects the biological behavior of tumor cells. Hence, the objective of the study is to investigate whether a fully quantitative pathomics-collagen signature (PCS) in the tumor microenvironment can be used to predict LNM.

Methods: Patients with histologically confirmed stage I-III CRC who underwent radical surgery were included in the training cohort (n = 329), the internal validation cohort (n = 329), and the external validation cohort (n = 315). Fully quantitative pathomics features and collagen features were extracted from digital H&E images and multiphoton images of specimens, respectively. LASSO regression was utilized to develop the PCS. Then, a PCS-nomogram was constructed incorporating the PCS and clinicopathological predictors for estimating LNM in the training cohort. The performance of the PCS-nomogram was evaluated via calibration, discrimination, and clinical usefulness. Furthermore, the PCS-nomogram was tested in internal and external validation cohorts.

Results: By LASSO regression, the PCS was developed based on 11 pathomics and 9 collagen features. A significant association was found between the PCS and LNM in the three cohorts (P < 0.001). Then, the PCS-nomogram based on PCS, preoperative CEA level, lymphadenectasis on CT, venous emboli and/or lymphatic invasion and/or perineural invasion (VELIPI), and pT stage achieved AUROCs of 0.939, 0.895, and 0.893 in the three cohorts. The calibration curves identified good agreement between the nomogram-predicted and actual outcomes. Decision curve analysis indicated that the PCS-nomogram was clinically useful. Moreover, the PCS was still an independent predictor of LNM at station Nos. 1, 2, and 3. The PCS nomogram displayed AUROCs of 0.849-0.939 for the training cohort, 0.837-0.902 for the internal validation cohort, and 0.851-0.895 for the external validation cohorts in the three nodal stations.

Conclusions: This study proposed that PCS integrating pathomics and collagen features was significantly associated with LNM, and the PCS-nomogram has the potential to be a useful tool for predicting individual LNM in CRC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811897PMC
http://dx.doi.org/10.1186/s12967-024-04851-2DOI Listing

Publication Analysis

Top Keywords

pathomics-collagen signature
8
lymph node
8
node metastasis
8
colorectal cancer
8
estimating lnm
8
h&e images
8
fully quantitative
8
training cohort
8
cohort n = 329
8
validation cohort
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!