Background: The epiretinal membrane (ERM) is a common retinal disorder characterized by abnormal fibrocellular tissue at the vitreomacular interface. Most patients with ERM are asymptomatic at early stages. Therefore, screening for ERM will become increasingly important. Despite the high prevalence of ERM, few deep learning studies have investigated ERM detection in the color fundus photography (CFP) domain. In this study, we built a generative model to enhance ERM detection performance in the CFP.
Methods: This deep learning study retrospectively collected 302 ERM and 1,250 healthy CFP data points from a healthcare center. The generative model using StyleGAN2 was trained using single-center data. EfficientNetB0 with StyleGAN2-based augmentation was validated using independent internal single-center data and external datasets. We randomly assigned healthcare center data to the development (80%) and internal validation (20%) datasets. Data from two publicly accessible sources were used as external validation datasets.
Results: StyleGAN2 facilitated realistic CFP synthesis with the characteristic cellophane reflex features of the ERM. The proposed method with StyleGAN2-based augmentation outperformed the typical transfer learning without a generative adversarial network. The proposed model achieved an area under the receiver operating characteristic (AUC) curve of 0.926 for internal validation. AUCs of 0.951 and 0.914 were obtained for the two external validation datasets. Compared with the deep learning model without augmentation, StyleGAN2-based augmentation improved the detection performance and contributed to the focus on the location of the ERM.
Conclusions: We proposed an ERM detection model by synthesizing realistic CFP images with the pathological features of ERM through generative deep learning. We believe that our deep learning framework will help achieve a more accurate detection of ERM in a limited data setting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811871 | PMC |
http://dx.doi.org/10.1186/s12911-024-02431-4 | DOI Listing |
Health Aff (Millwood)
January 2025
Eric Horvitz, Microsoft, Redmond, Washington.
The field of artificial intelligence (AI) has entered a new cycle of intense opportunity, fueled by advances in deep learning, including generative AI. Applications of recent advances affect many aspects of everyday life, yet nowhere is it more important to use this technology safely, effectively, and equitably than in health and health care. Here, as part of the National Academy of Medicine's Vital Directions for Health and Health Care: Priorities for 2025 initiative, which is designed to provide guidance on pressing health care issues for the incoming presidential administration, we describe the steps needed to achieve these goals.
View Article and Find Full Text PDFPurpose: Predicting long-term anatomical responses in neovascular age-related macular degeneration (nAMD) patients is critical for patient-specific management. This study validates a generative deep learning (DL) model to predict 12-month posttreatment optical coherence tomography (OCT) images and evaluates the impact of incorporating clinical data on predictive performance.
Methods: A total of 533 eyes from 513 treatment-naïve nAMD patients were analyzed.
ACS Nano
January 2025
Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.
Identifying effective biomarkers has long been a persistent need for early diagnosis and targeted therapy of disease. While mass spectrometry-based label-free proteomics with trace cell has been demonstrated, deep proteomics with ultratrace human biofluid remains challenging due to low protein concentration, extremely limited patient sample volume, and substantial protein contact losses during preprocessing. Herein, we proposed and validated lanthanide metal-organic framework flowers (MOF-flowers), as effective materials, to trap and enrich protein in biofluid jointly through cation-π interaction and O-Ln coordination.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
Metal-organic frameworks (MOFs) hold great potential in gas separation and storage. Graph neural networks (GNNs) have proven effective in exploring structure-property relationships and discovering new MOF structures. Unlike molecular graphs, crystal graphs must consider the periodicity and patterns.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Faculty of Information Technology, Beijing University of Technology, Beijing, People's Republic of China.
In fundus images, precisely segmenting retinal blood vessels is important for diagnosing eye-related conditions, such as diabetic retinopathy and hypertensive retinopathy or other eye-related disorders. In this work, we propose an enhanced U-shaped network with dual-attention, named DAU-Net, divided into encoder and decoder parts. Wherein, we replace the traditional convolutional layers with ConvNeXt Block and SnakeConv Block to strengthen its recognition ability for different forms of blood vessels while lightweight the model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!