Background: With the emergence of many side effects from synthetic drugs, there is an urgent need to find a natural alternative to these products. Therefore, our primary aim was to evaluate the anti-inflammatory activity of Tamarix aphylla (TA) and investigate the potential mechanism underlying this action.

Methods: Initially, to ensure the safety of the extract and for dose selection, we performed an acute oral toxicity Assay through the oral administration of graded doses up to 4 g\kg in Wistar rats. then, we used the carrageenan-induced edema model to elucidate the anti-inflammatory activity. Using specific ELISA kits, we measured the levels of TNF-α, IL-1β, COX-2 and NO inside the inflamed paw tissue. Finally, for the in-vitro anti-inflammatory experiment, we used the erythrocyte membrane stability test.

Results: Based on the acute oral toxicity assay, T. aphylla was considered generally safe and three different doses of 100, 200, and 400 mg/kg were chosen for further experiments. Additionally, TA expressed a significant (P < 0.05) anti-inflammatory activity, showing the maximum inhibition percentage at the fifth hour of measurement at 53.47% and 70.06%, at doses of 200 and 400 mg/kg respectively, compared to 63.81% for the standard drug. Similarly, we found that TA effectively reduced the levels of TNF-α and IL-1β at all tested doses (100-200-400 mg/kg) to a greater extent than the standard drug. Moreover, at 400 mg/kg, TA was able to significantly lower the levels of COX-2 and NO inside the inflamed tissue to a level comparable (P < 0.05) with that measured inside the paw tissue of normal rats. Finally, Tamarix aphylla at 100, 200 and 400 mg/kg doses significantly (P < 0.05) inhibited the heat-induced hemolysis of RBCs membrane by 67.78, 74.82 and 82.08%, respectively, compared to 83.89% produced by Aspirin.

Conclusion: T. aphylla produced a significant (P < 0.05) anti-inflammatory activity compared to the standard drugs either through the reduction of pro-inflammatory mediators or the protection of the lysosomal membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809683PMC
http://dx.doi.org/10.1186/s12906-024-04359-8DOI Listing

Publication Analysis

Top Keywords

anti-inflammatory activity
12
il-1β cox-2
8
activity tamarix
8
tamarix aphylla
8
acute oral
8
oral toxicity
8
toxicity assay
8
involvement tnfα
4
tnfα il-1β
4
anti-inflammatory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!