Generation of tissues outside the field of view (FOV) of radiation therapy simulation imaging based on machine learning and patient body outline (PBO).

Radiat Oncol

Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.

Published: January 2024

Background: It is not unusual to see some parts of tissues are excluded in the field of view of CT simulation images. A typical mitigation is to avoid beams entering the missing body parts at the cost of sub-optimal planning.

Methods: This study is to solve the problem by developing 3 methods, (1) deep learning (DL) mechanism for missing tissue generation, (2) using patient body outline (PBO) based on surface imaging, and (3) hybrid method combining DL and PBO. The DL model was built upon a Globally and Locally Consistent Image Completion to learn features by Convolutional Neural Networks-based inpainting, based on Generative Adversarial Network. The database used comprised 10,005 CT training slices of 322 lung cancer patients and 166 CT evaluation test slices of 15 patients. CT images were from the publicly available database of the Cancer Imaging Archive. Since existing data were used PBOs were acquired from the CT images. For evaluation, Structural Similarity Index Metric (SSIM), Root Mean Square Error (RMSE) and Peak signal-to-noise ratio (PSNR) were evaluated. For dosimetric validation, dynamic conformal arc plans were made with the ground truth images and images generated by the proposed method. Gamma analysis was conducted at relatively strict criteria of 1%/1 mm (dose difference/distance to agreement) and 2%/2 mm under three dose thresholds of 1%, 10% and 50% of the maximum dose in the plans made on the ground truth image sets.

Results: The average SSIM in generation part only was 0.06 at epoch 100 but reached 0.86 at epoch 1500. Accordingly, the average SSIM in the whole image also improved from 0.86 to 0.97. At epoch 1500, the average values of RMSE and PSNR in the whole image were 7.4 and 30.9, respectively. Gamma analysis showed excellent agreement with the hybrid method (equal to or higher than 96.6% of the mean of pass rates for all scenarios).

Conclusions: It was first demonstrated that missing tissues in simulation imaging could be generated with high similarity, and dosimetric limitation could be overcome. The benefit of this study can be significantly enlarged when MR-only simulation is considered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811833PMC
http://dx.doi.org/10.1186/s13014-023-02384-4DOI Listing

Publication Analysis

Top Keywords

field view
8
simulation imaging
8
patient body
8
body outline
8
outline pbo
8
hybrid method
8
plans ground
8
ground truth
8
gamma analysis
8
average ssim
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!