This paper proposes a decentralized practical prescribed-time (PT) tracking design using quantized output feedback (QOF) for uncertain interconnected lower-triangular systems with unknown time-delay interconnections. The local output signals are assumed to be only measured and quantized for the PT tracker design under a band-limited network. By employing a PT-dependent scaling function, a decentralized memoryless PT observer based on quantized local outputs is developed to estimate local unmeasurable state variables. Owing to output quantization, the available output feedback signals become discontinuous. As a result, the tracking error between the actual (i.e., unquantized) local output and the local desired signal cannot be utilized in the local virtual controller. To address this issue, a novel adaptive compensation mechanism is derived to design the local PT neural network tracking laws using only quantized local outputs and estimated states. The proposed PT tracking controller does not require information on the interconnected nonlinear functions and interaction delays. During the Lyapunov stability analysis, the boundary layer error decomposition approach is employed to address the issue of non-differentiability in the local virtual control laws. The proposed QOF control system achieves practical PT stability. It is shown that the settling time of local tracking errors can be predetermined, regardless of the design parameters and initial conditions. Finally, the proposed QOF decentralization strategy is supported with illustrative examples and a comparison to demonstrate its benefits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2024.01.018DOI Listing

Publication Analysis

Top Keywords

local
10
practical prescribed-time
8
interconnected nonlinear
8
systems unknown
8
interaction delays
8
output feedback
8
local output
8
quantized local
8
local outputs
8
local virtual
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!