Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Cryoablation is a minimally invasive option for patients with medically inoperable non-small cell lung cancer (NSCLC) and can trigger abscopal immune-regulatory effects. However, it remains unclear how cryoablation affects the host-level immune response in NSCLC. In this study, we investigated the local and systemic immunological effects of cryoablation and the potential of combining cryoablation with programmed cell death protein 1 (PD-1) blockade to boost immunotherapy efficacy in NSCLC.
Methods: We first investigated systemic immunological effects induced by cryoablation in patients with early-stage NSCLC. Subsequently, we explored cryoablation-induced antitumor immunity and the underlying biological mechanisms using KP ( , ) mutant lung cancer cell allograft mouse models. Moreover, the synergistic efficacy of cryoablation and PD-1 blockade was explored in both mouse models and patients with unresectable NSCLC.
Results: We found that cryoablation significantly increased circulating CD8 T cell subpopulations and proinflammatory cytokines in patients with early-stage NSCLC. In lung cancer cell allograft mouse models, we demonstrated that cryoablation resulted in abscopal growth inhibition of contralateral, non-ablated tumors. Integrated analysis of bulk, single-cell RNA and T cell receptor (TCR) sequencing data revealed that cryoablation reprogrammed the intratumoral immune microenvironment and increased CD8 T cell infiltration with higher effector signature, interferon (IFN) response, and cytolytic activity. Mechanistically, cryoablation promoted antitumor effect through the STING-dependent type I IFN signaling pathway, and type I IFN signaling blockade attenuated this antitumor effect. We also found that the combination of PD-1 blockade with cryoablation further inhibited tumor growth compared with either treatment alone in an allograft mouse model. Moreover, the combination therapy induced notable tumor suppression and CD8 T cell infiltration in patients with unresectable NSCLC.
Conclusions: Our results provide mechanistic insights into how cryoablation triggers the antitumor immune effect in lung cancer, thereby potentiating programmed cell death ligand 1 (PD-L1)/PD-1 blockade efficacy in the clinical treatment of NSCLC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10824009 | PMC |
http://dx.doi.org/10.1136/jitc-2023-008386 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!