Since the start of the SARS-CoV-2 pandemic, the search for antiviral therapies has been at the forefront of medical research. To date, the 3CLpro inhibitor nirmatrelvir (Paxlovid®) has shown the best results in clinical trials and the greatest robustness against variants. A second SARS-CoV-2 protease inhibitor, ensitrelvir (Xocova®), has been developed. Ensitrelvir, currently in Phase 3, was approved in Japan under the emergency regulatory approval procedure in November 2022, and is available since March 31, 2023. One of the limitations for the use of antiviral monotherapies is the emergence of resistance mutations. Here, we experimentally generated mutants resistant to nirmatrelvir and ensitrelvir in vitro following repeating passages of SARS-CoV-2 in the presence of both antivirals. For both molecules, we demonstrated a loss of sensitivity for resistance mutants in vitro. Using a Syrian golden hamster infection model, we showed that the ensitrelvir M49L mutation, in the multi-passage strain, confers a high level of in vivo resistance. Finally, we identified a recent increase in the prevalence of M49L-carrying sequences, which appears to be associated with multiple repeated emergence events in Japan and may be related to the use of Xocova® in the country since November 2022. These results highlight the strategic importance of genetic monitoring of circulating SARS-CoV-2 strains to ensure that treatments administered retain their full effectiveness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2024.105814DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 strains
8
november 2022
8
sars-cov-2
5
generation evaluation
4
evaluation protease
4
protease inhibitor-resistant
4
inhibitor-resistant sars-cov-2
4
strains start
4
start sars-cov-2
4
sars-cov-2 pandemic
4

Similar Publications

COVID-19 outbreaks caused by different SARS-CoV-2 variants: a descriptive, comparative study from China.

Front Public Health

December 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Medical Virology and Viral Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Objectives: To understand the epidemic characteristics of various SARS-CoV-2 variants, we mainly focus on analyzing general epidemic profiles, viral mutation, and evolution of COVID-19 outbreaks caused by different SARS-CoV-2 variants of concern (VOCs) in China as of August 2022.

Methods: We systematically sorted out the general epidemic profiles of outbreaks caused by various SARS-CoV-2 VOCs in China, compared the differences of outbreaks caused by Delta and Omicron VOCs, and analyzed the mutational changes of subvariants between the same outbreak and different outbreaks.

Findings: By 15 August 2022, a total of 2, 33, and 124 COVID-19 outbreaks caused by Alpha, Delta, and Omicron VOCs, respectively, were reported in different regions of China.

View Article and Find Full Text PDF

Increased immune evasion by emerging and highly mutated SARS-CoV-2 variants is a key challenge to the control of COVID-19. The majority of these mutations mainly target the spike protein, allowing the new variants to escape the immunity previously raised by vaccination and/or infection by earlier variants of SARS-CoV-2. In this study, we investigated the neutralizing capacity of antibodies against emerging variants of interest circulating between May 2023 and October 2024 using sera from representative samples of the Kenyan population.

View Article and Find Full Text PDF

Immunogenicity of a multivalent protein subunit vaccine based on non-glycosylated RBD antigens of SARS-cov-2 and its variants.

Virology

December 2024

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Departamento de Biotecnología y Bioingeniería, Av. Instituto Politécnico Nacional 2508, Mexico City, 07360, Mexico; CINVESTAV, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Mexico. Electronic address:

COVID-19 infections continue due to accessibility barriers to vaccines and the emergence of SARS-CoV-2 variants. An effective, safe, accessible, and broad-spectrum vaccine is still needed to control the disease. We developed a multivalent protein subunit vaccine comprising antigens designed from a non-N-glycosylated region of the receptor-binding domain of the spike protein of SARS-CoV-2.

View Article and Find Full Text PDF

As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host's immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time.

View Article and Find Full Text PDF

Background: Invasive candidiasis is a predominant mycosis in hospitalized patients, and is the species most often responsible for this infection. Most candidiasis cases originate from endogenous mycobiota; therefore, strains can easily be transferred among hospital patients and personnel. The aim of this study was to assess the possible horizontal transmission of in patients with severe COVID-19 infection requiring hospitalization in the intensive care unit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!