The existence of the artificial sweetener acesulfame (ACE) in quantities of significance can negatively impact water quality, and its consumption has been associated with deleterious health effects. The present investigation explores the efficacy of heat-activated sodium persulfate (SPS) for eliminating ACE. The complete degradation of 0.50 mg L of ACE was achieved within 45 min under a reaction temperature of 50 °C and 100 mg L of SPS. The impact of thermal decomposition on ACE at a temperature of 60 °C was negligible. This study considers several factors, such as the SPS and ACE loading, the reaction temperature, the initial pH, and the water matrix of the reactor. The results indicate that the method's efficiency is positively correlated with higher initial concentrations of SPS, whereas it is inversely associated with the initial concentration of ACE. Furthermore, higher reaction temperatures and acidic initial pH levels promote the degradation of acesulfame. At the same time, certain constituents of the water matrix, such as humic acid, chlorides, and bicarbonates, can hinder the degradation process. Additionally, the data from LC-QToF-MS analysis of the samples were used to investigate transformation through suspect and non-target screening approaches. Overall, ACE's eight transformation products (TPs) were detected, and a potential ACE decomposition pathway was proposed. The concentration of TPs followed a volcano curve, decreasing in long treatment times. The ecotoxicity of ACE and its identified TPs was predicted using the ECOSAR software. The majority of TPs exhibited not harmful values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141260 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, PR China. Electronic address:
Proteins and polyphenols exhibit distinct biological activities and functional properties. A comprehensive investigation into the formation mechanisms, structures, and functional properties of protein-polyphenol complexes will deepen our understanding of their interactions and establish a theoretical foundation and technical support for development of novel functional foods and pharmaceutical products. The almond protein-phloretin (AP-PHL) covalent complex was synthesized through the covalent binding of hydroxyl radicals to phloretin (PHL), utilizing almond protein (AP) as the raw material.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow city, Poland.
Fly ash, produced during coal combustion for energy making, which is recognized as an industrial by-product, could lead to environmental health hazards. Subsequently, fly ash found that an exceptional adsorption performance for the removal of various toxic pollutants, the adsorption capacity of fly ash might be altered by introducing physical/chemical stimulation. Successfully converting fly ash into zeolites not only recovers their disposal difficulties but also transforms unwanted materials into merchandisable products for various industrial applications.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Chemical Engineering College, Inner Mongolia University of Technology, Aimin street 49 Xincheng District, Hohhot 010051 PR China; Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Aimin street 49, Xincheng District, Hohhot 010051 PR China; Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Aimin street 49 Xincheng District, Hohhot 010051 PR China. Electronic address:
Ligand engineering has proven to be an effective strategy for tuning and controlling the microenvironment of coordinated metal centers, highlighting the critical bridge between the activity and structural features of catalysts during electrocatalytic CO reduction reactions (eCORR). However, the limited availability of diverse organic ligands has hindered the development of novel high-performing electrocatalysts. In contrast, small organic molecules have been widely used in the fabrication of metal complexes due to their well-defined functionalities, low cost, and easy accessibility.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
The combined application of dissimilatory iron-reducing bacteria (DIRB) and Fe(III) nanoparticles has garnered widespread interest in the contaminants transformation and removal. The efficiency of this composite system relies on the extracellular electron transfer (EET) process between DIRB and Fe(III) nanoparticles. While modifications to Fe(III) nanoparticles have demonstrated improvements in EET, enhancing DIRB activity also shows potential for further EET enhancement, meriting further investigation.
View Article and Find Full Text PDFAquat Toxicol
January 2025
SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
Synthetic progestin dydrogesterone is widely used in gynecology and animal husbandry, leading to high environmental detection rates and concentrations. Dydrogesterone influences sex differentiation, gonad development, and spawning in fish. However, its impact on the liver, a vital organ for hormone production and detoxification, remains largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!