Arsenic poisoning in agricultural soil is caused by both natural and man-made processes, and it poses a major risk to crop production and human health. Soil quality, agricultural production, runoff, ingestion, leaching, and absorption by plants are all influenced by these processes. Microbial consortia have become a feasible bioremediation technique in response to the urgent need for appropriate remediation solutions. These diverse microbial populations collaborate to combat arsenic poisoning in soil by facilitating mechanisms including oxidation-reduction, methylation-demethylation, volatilization, immobilization, and arsenic mobilization. The current state, problems, and remedies for employing microbial consortia in arsenic bioremediation in agricultural soils are examined in this review. Among the elements affecting their success include diversity, activity, community organization, and environmental conditions. Also, we emphasize the sensitivity and accuracy limits of existing assessment techniques. While earlier reviews have addressed a variety of arsenic remediation options, this study stands out by concentrating on microbial consortia as a viable strategy for arsenic removal and presents performance evaluation and technical problems. This work gives vital insights for tackling the major issue of arsenic pollution in agricultural soils by explaining the potential methods and components involved in microbial consortium-mediated arsenic bioremediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.170297 | DOI Listing |
Sheng Wu Gong Cheng Xue Bao
December 2024
School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China.
Arsenic (As) is a common toxic pollution element. The microorganism-mediated transformation of arsenic forms is an important part in the biogeochemical cycle of As. In the various microbial metabolic processes involving As, the coupling reduction of As has a great impact on the environment and is a process that is easily overlooked.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
College of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an 311300, China.
Cadmium (Cd) and arsenic (As) often coexist in water and agricultural soils around mining areas, and it is difficult to remove them at the same time due to their opposite chemical behaviors. Therefore, this study employed a co-precipitation-pyrolysis method to synthesize silica-based magnetic biochar (SMB) materials for the remediation of water contaminated with both Cd and As. The optimization of preparation conditions involved introducing three different types of silicates (NaSiO, CaSiO,and SiO) into the biomass-magnetite mixture, followed by pyrolysis at various temperatures (300℃, 500℃, and 700℃), and the optimal preparation conditions were determined based on the composite batch experiments.
View Article and Find Full Text PDFInt Microbiol
December 2024
Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Science and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia.
This study re-evaluates Pseudofrankia strains, traditionally regarded as parasitic dwellers of actinorhizal root nodules due to their inability to fix nitrogen (Fix -) and/or nodulate (Nod -), as potential plant growth-promoting bacteria (PGPB). We compared plant growth-promoting traits (PGPTs) between Pseudofrankia strains, including one newly sequenced strain BMG5.37 in this study and typical (Fix + /Nod +) Frankia, Protofrankia, and Parafrankia, as well as non-frankia actinorhizal species Nocardia and Micromonospora, and the phytopathogenic Streptomyces.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Department of Plant Protection, Faculty of Agriculture, Vali-E- Asr University of Rafsanjan, Rafsanjan, Iran.
Background: Arbuscular mycorrhizal fungi (AMF) can regulate metal(loid) tolerance in plants and their capacity for phytoremediation. These effects can vary depending on the host plant and the AMF species. The impact of different AMF species on the ability of safflower (Carthamus tinctorius L.
View Article and Find Full Text PDFHuan Jing Ke Xue
November 2024
College of Environmental and Resources Sciences, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou 311300, China.
Due to the aggravation of atmospheric nitrogen and sulfur deposition and the unreasonable application of fertilizer, soil acidification is becoming increasingly serious. In heavy metal-contaminated soils, acidification not only seriously affects fertility but also the effectiveness and sustainability of conventional passivation remediation materials such as biochar. The application of calcium fertilizer may improve soil acidification, alleviate the aging of biochar materials in soil, and improve its remediation ability to composite polluted soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!